Using a Coarse-Grained Modeling Framework to Identify Oligomeric Motifs with Tunable Secondary Structure

Coarse-grained modeling can be used to explore general theories that are independent of specific chemical detail. In this paper, we present cg_openmm, a Python-based simulation framework for modeling coarse-grained hetero-oligomers and screening them for structural and thermodynamic characteristics...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of chemical theory and computation 2021-10, Vol.17 (10), p.6018-6035
Hauptverfasser: Walker, Christopher C, Meek, Garrett A, Fobe, Theodore L, Shirts, Michael R
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Coarse-grained modeling can be used to explore general theories that are independent of specific chemical detail. In this paper, we present cg_openmm, a Python-based simulation framework for modeling coarse-grained hetero-oligomers and screening them for structural and thermodynamic characteristics of cooperative secondary structures. cg_openmm facilitates the building of coarse-grained topology and random starting configurations, setup of GPU-accelerated replica exchange molecular dynamics simulations with the OpenMM software package, and features a suite of postprocessing thermodynamic and structural analysis tools. In particular, native contact analysis, heat capacity calculations, and free energy of folding calculations are used to identify and characterize cooperative folding transitions and stable secondary structures. In this work, we demonstrate the capabilities of cg_openmm on a simple 1–1 Lennard-Jones coarse-grained model, in which each residue contains 1 backbone and 1 side-chain bead. By scanning both nonbonded and bonded force-field parameter spaces at the coarse-grained level, we identify and characterize sets of parameters which result in the formation of stable helices through cooperative folding transitions. Moreover, we show that the geometries and stabilities of these helices can be tuned by manipulating the force-field parameters.
ISSN:1549-9618
1549-9626
DOI:10.1021/acs.jctc.1c00528