Evidence for a high-energy tail in the gamma-ray spectra of globular clusters
ABSTRACT Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes – curvature radiation from millisecond pulsar magnetospheres versus inverse Compton emission from relativistic pairs launc...
Gespeichert in:
Veröffentlicht in: | Monthly notices of the Royal Astronomical Society 2021-11, Vol.507 (4), p.5161-5176 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACT
Millisecond pulsars are very likely the main source of gamma-ray emission from globular clusters. However, the relative contributions of two separate emission processes – curvature radiation from millisecond pulsar magnetospheres versus inverse Compton emission from relativistic pairs launched into the globular cluster environment by millisecond pulsars – have long been unclear. To address this, we search for evidence of inverse Compton emission in 8-yr Fermi–LAT data from the directions of 157 Milky Way globular clusters. We find a mildly statistically significant (3.8σ) correlation between the measured globular cluster gamma-ray luminosities and their photon field energy densities. However, this may also be explained by a hidden correlation between the photon field densities and the stellar encounter rates of globular clusters. Analysed in toto, we demonstrate that the gamma-ray emission of globular clusters can be resolved spectrally into two components: (i) an exponentially cut-off power law and (ii) a pure power law. The latter component – which we uncover at a significance of 8.2σ – has a power index of 2.79 ± 0.25. It is most naturally interpreted as inverse Compton emission by cosmic-ray electrons and positrons injected by millisecond pulsars. We find the luminosity of this power-law component is comparable to, or slightly smaller than, the luminosity of the curved component, suggesting the fraction of millisecond pulsar spin-down luminosity into relativistic leptons is similar to the fraction of the spin-down luminosity into prompt magnetospheric radiation. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab2406 |