On the liquid–liquid phase transition of dense hydrogen

Until recently the consensus theory/computation interpretation of the challenging liquid liquid phase transition (LLPT) of high-pressure hydrogen was first order. Cheng et al. developed a machine-learnt potential (MLP) that, in larger molecular dynamics (MD) simulations, gives a continuous transitio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2021-12, Vol.600 (7889), p.E12-E14
Hauptverfasser: Karasiev, Valentin V., Hinz, Joshua, Hu, S. X., Trickey, S. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page E14
container_issue 7889
container_start_page E12
container_title Nature (London)
container_volume 600
creator Karasiev, Valentin V.
Hinz, Joshua
Hu, S. X.
Trickey, S. B.
description Until recently the consensus theory/computation interpretation of the challenging liquid liquid phase transition (LLPT) of high-pressure hydrogen was first order. Cheng et al. developed a machine-learnt potential (MLP) that, in larger molecular dynamics (MD) simulations, gives a continuous transition instead. Here, we show that the MLP does not reproduce our still larger MD density-functional theory (MD-DFT) calculations as it should. Since the MLP is not a faithful surrogate for the MD-DFT, the Ref. 6 prediction of a supercritical atomic liquid is unfounded.
doi_str_mv 10.1038/s41586-021-04078-x
format Article
fullrecord <record><control><sourceid>gale_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1837432</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A686972066</galeid><sourcerecordid>A686972066</sourcerecordid><originalsourceid>FETCH-LOGICAL-c620t-8d07cfa5b2474afd50bc45b2c7cb245535f37f6665fcf779173741d9bc9577c53</originalsourceid><addsrcrecordid>eNp90t1qFDEUB_Agiq3VF_BChvZGkaknM_may2Xxo1AsaMXLkM0kuymzyW6Sge2d7-Ab-iSmThUXVsnFZM78zoEz_BF6juEcQyveJIKpYDU0uAYCXNS7B-gYE85qwgR_iI4BGlGDaNkRepLSDQBQzMljdNSSDjcg4Bh1V77KK1MNbju6_se379Ol2qxUMlWOyieXXfBVsFVvfKmtbvsYlsY_RY-sGpJ5dv88QV_evb2ef6gvr95fzGeXtWYN5Fr0wLVVdNEQTpTtKSw0KW-a61KitKW25ZYxRq22nHeYt5zgvlvojnKuaXuCTqe5IWUnk3bZ6JUO3hudJRZFt01BLye0iWE7mpTl2iVthkF5E8YkG4ahw5h2uNCziS7VYKTzNpQt9R2XMyZYxxtgrKj6gCprm6iG4I11pbznTw94vXFb-Tc6P4DK6c3a6YNTX-01FJPNLi_VmJK8-Pxp377-t51df51_3NfNpHUMKUVj5Sa6tYq3EoO8S5ec0iVLuuSvdMldaXpx_5fHxdr0f1p-x6mAdgKpfPJLE-VNGKMv8fjf2J_4sNWB</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2610911591</pqid></control><display><type>article</type><title>On the liquid–liquid phase transition of dense hydrogen</title><source>MEDLINE</source><source>SpringerLink Journals</source><source>Nature Journals Online</source><creator>Karasiev, Valentin V. ; Hinz, Joshua ; Hu, S. X. ; Trickey, S. B.</creator><creatorcontrib>Karasiev, Valentin V. ; Hinz, Joshua ; Hu, S. X. ; Trickey, S. B. ; Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><description>Until recently the consensus theory/computation interpretation of the challenging liquid liquid phase transition (LLPT) of high-pressure hydrogen was first order. Cheng et al. developed a machine-learnt potential (MLP) that, in larger molecular dynamics (MD) simulations, gives a continuous transition instead. Here, we show that the MLP does not reproduce our still larger MD density-functional theory (MD-DFT) calculations as it should. Since the MLP is not a faithful surrogate for the MD-DFT, the Ref. 6 prediction of a supercritical atomic liquid is unfounded.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/s41586-021-04078-x</identifier><identifier>PMID: 34912080</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/119/2795 ; 639/33/445/846 ; ASTRONOMY AND ASTROPHYSICS ; Chemical properties ; Chemical research ; Giant planets ; Humanities and Social Sciences ; Hydrogen ; Machine learning ; Matters Arising ; Molecular dynamics ; multidisciplinary ; Phase transformations (Statistical physics) ; Phase Transition ; Phase transitions and critical phenomena ; Science ; Science (multidisciplinary) ; Thermodynamics</subject><ispartof>Nature (London), 2021-12, Vol.600 (7889), p.E12-E14</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>COPYRIGHT 2021 Nature Publishing Group</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c620t-8d07cfa5b2474afd50bc45b2c7cb245535f37f6665fcf779173741d9bc9577c53</citedby><cites>FETCH-LOGICAL-c620t-8d07cfa5b2474afd50bc45b2c7cb245535f37f6665fcf779173741d9bc9577c53</cites><orcidid>0000-0001-9224-6304 ; 0000-0003-2465-3818 ; 0000-0003-3445-6797 ; 0000000324653818 ; 0000000334456797 ; 0000000192246304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41586-021-04078-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41586-021-04078-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,777,781,882,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34912080$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1837432$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Karasiev, Valentin V.</creatorcontrib><creatorcontrib>Hinz, Joshua</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Trickey, S. B.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><title>On the liquid–liquid phase transition of dense hydrogen</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Until recently the consensus theory/computation interpretation of the challenging liquid liquid phase transition (LLPT) of high-pressure hydrogen was first order. Cheng et al. developed a machine-learnt potential (MLP) that, in larger molecular dynamics (MD) simulations, gives a continuous transition instead. Here, we show that the MLP does not reproduce our still larger MD density-functional theory (MD-DFT) calculations as it should. Since the MLP is not a faithful surrogate for the MD-DFT, the Ref. 6 prediction of a supercritical atomic liquid is unfounded.</description><subject>639/301/119/2795</subject><subject>639/33/445/846</subject><subject>ASTRONOMY AND ASTROPHYSICS</subject><subject>Chemical properties</subject><subject>Chemical research</subject><subject>Giant planets</subject><subject>Humanities and Social Sciences</subject><subject>Hydrogen</subject><subject>Machine learning</subject><subject>Matters Arising</subject><subject>Molecular dynamics</subject><subject>multidisciplinary</subject><subject>Phase transformations (Statistical physics)</subject><subject>Phase Transition</subject><subject>Phase transitions and critical phenomena</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Thermodynamics</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp90t1qFDEUB_Agiq3VF_BChvZGkaknM_may2Xxo1AsaMXLkM0kuymzyW6Sge2d7-Ab-iSmThUXVsnFZM78zoEz_BF6juEcQyveJIKpYDU0uAYCXNS7B-gYE85qwgR_iI4BGlGDaNkRepLSDQBQzMljdNSSDjcg4Bh1V77KK1MNbju6_se379Ol2qxUMlWOyieXXfBVsFVvfKmtbvsYlsY_RY-sGpJ5dv88QV_evb2ef6gvr95fzGeXtWYN5Fr0wLVVdNEQTpTtKSw0KW-a61KitKW25ZYxRq22nHeYt5zgvlvojnKuaXuCTqe5IWUnk3bZ6JUO3hudJRZFt01BLye0iWE7mpTl2iVthkF5E8YkG4ahw5h2uNCziS7VYKTzNpQt9R2XMyZYxxtgrKj6gCprm6iG4I11pbznTw94vXFb-Tc6P4DK6c3a6YNTX-01FJPNLi_VmJK8-Pxp377-t51df51_3NfNpHUMKUVj5Sa6tYq3EoO8S5ec0iVLuuSvdMldaXpx_5fHxdr0f1p-x6mAdgKpfPJLE-VNGKMv8fjf2J_4sNWB</recordid><startdate>20211216</startdate><enddate>20211216</enddate><creator>Karasiev, Valentin V.</creator><creator>Hinz, Joshua</creator><creator>Hu, S. X.</creator><creator>Trickey, S. B.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-9224-6304</orcidid><orcidid>https://orcid.org/0000-0003-2465-3818</orcidid><orcidid>https://orcid.org/0000-0003-3445-6797</orcidid><orcidid>https://orcid.org/0000000324653818</orcidid><orcidid>https://orcid.org/0000000334456797</orcidid><orcidid>https://orcid.org/0000000192246304</orcidid></search><sort><creationdate>20211216</creationdate><title>On the liquid–liquid phase transition of dense hydrogen</title><author>Karasiev, Valentin V. ; Hinz, Joshua ; Hu, S. X. ; Trickey, S. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c620t-8d07cfa5b2474afd50bc45b2c7cb245535f37f6665fcf779173741d9bc9577c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/301/119/2795</topic><topic>639/33/445/846</topic><topic>ASTRONOMY AND ASTROPHYSICS</topic><topic>Chemical properties</topic><topic>Chemical research</topic><topic>Giant planets</topic><topic>Humanities and Social Sciences</topic><topic>Hydrogen</topic><topic>Machine learning</topic><topic>Matters Arising</topic><topic>Molecular dynamics</topic><topic>multidisciplinary</topic><topic>Phase transformations (Statistical physics)</topic><topic>Phase Transition</topic><topic>Phase transitions and critical phenomena</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karasiev, Valentin V.</creatorcontrib><creatorcontrib>Hinz, Joshua</creatorcontrib><creatorcontrib>Hu, S. X.</creatorcontrib><creatorcontrib>Trickey, S. B.</creatorcontrib><creatorcontrib>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karasiev, Valentin V.</au><au>Hinz, Joshua</au><au>Hu, S. X.</au><au>Trickey, S. B.</au><aucorp>Univ. of Rochester, NY (United States). Lab. for Laser Energetics</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the liquid–liquid phase transition of dense hydrogen</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2021-12-16</date><risdate>2021</risdate><volume>600</volume><issue>7889</issue><spage>E12</spage><epage>E14</epage><pages>E12-E14</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>Until recently the consensus theory/computation interpretation of the challenging liquid liquid phase transition (LLPT) of high-pressure hydrogen was first order. Cheng et al. developed a machine-learnt potential (MLP) that, in larger molecular dynamics (MD) simulations, gives a continuous transition instead. Here, we show that the MLP does not reproduce our still larger MD density-functional theory (MD-DFT) calculations as it should. Since the MLP is not a faithful surrogate for the MD-DFT, the Ref. 6 prediction of a supercritical atomic liquid is unfounded.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>34912080</pmid><doi>10.1038/s41586-021-04078-x</doi><tpages>3</tpages><orcidid>https://orcid.org/0000-0001-9224-6304</orcidid><orcidid>https://orcid.org/0000-0003-2465-3818</orcidid><orcidid>https://orcid.org/0000-0003-3445-6797</orcidid><orcidid>https://orcid.org/0000000324653818</orcidid><orcidid>https://orcid.org/0000000334456797</orcidid><orcidid>https://orcid.org/0000000192246304</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0028-0836
ispartof Nature (London), 2021-12, Vol.600 (7889), p.E12-E14
issn 0028-0836
1476-4687
language eng
recordid cdi_osti_scitechconnect_1837432
source MEDLINE; SpringerLink Journals; Nature Journals Online
subjects 639/301/119/2795
639/33/445/846
ASTRONOMY AND ASTROPHYSICS
Chemical properties
Chemical research
Giant planets
Humanities and Social Sciences
Hydrogen
Machine learning
Matters Arising
Molecular dynamics
multidisciplinary
Phase transformations (Statistical physics)
Phase Transition
Phase transitions and critical phenomena
Science
Science (multidisciplinary)
Thermodynamics
title On the liquid–liquid phase transition of dense hydrogen
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T11%3A36%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20liquid%E2%80%93liquid%20phase%20transition%20of%20dense%20hydrogen&rft.jtitle=Nature%20(London)&rft.au=Karasiev,%20Valentin%20V.&rft.aucorp=Univ.%20of%20Rochester,%20NY%20(United%20States).%20Lab.%20for%20Laser%20Energetics&rft.date=2021-12-16&rft.volume=600&rft.issue=7889&rft.spage=E12&rft.epage=E14&rft.pages=E12-E14&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/s41586-021-04078-x&rft_dat=%3Cgale_osti_%3EA686972066%3C/gale_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2610911591&rft_id=info:pmid/34912080&rft_galeid=A686972066&rfr_iscdi=true