Chemomechanically Stable Ultrahigh-Ni Single-Crystalline Cathodes with Improved Oxygen Retention and Delayed Phase Degradations

The pressing demand in electrical vehicle (EV) markets for high-energy-density lithium-ion batteries (LIBs) requires further increasing the Ni content in high-Ni and low-Co cathodes. However, the commercialization of high-Ni cathodes is hindered by their intrinsic chemomechanical instabilities and f...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nano letters 2021-11, Vol.21 (22), p.9797-9804
Hauptverfasser: Wang, Chunyang, Zhang, Rui, Siu, Carrie, Ge, Mingyuan, Kisslinger, Kim, Shin, Youngho, Xin, Huolin L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The pressing demand in electrical vehicle (EV) markets for high-energy-density lithium-ion batteries (LIBs) requires further increasing the Ni content in high-Ni and low-Co cathodes. However, the commercialization of high-Ni cathodes is hindered by their intrinsic chemomechanical instabilities and fast capacity fade. The emerging single-crystalline strategy offers a promising solution, yet the operation and degradation mechanism of single-crystalline cathodes remain elusive, especially in the extremely challenging ultrahigh-Ni (Ni > 90%) regime whereby the phase transformation, oxygen loss, and mechanical instability are exacerbated with increased Ni content. Herein, we decipher the atomic-scale stabilization mechanism controlling the enhanced cycling performance of an ultrahigh-Ni single-crystalline cathode. We find that the charge/discharge inhomogeneity, the intergranular cracking, and oxygen-loss-related phase degradations that are prominent in ultrahigh-Ni polycrystalline cathodes are considerably suppressed in their single-crystalline counterparts, leading to improved chemomechanical and cycling stabilities of the single-crystalline cathodes. Our work offers important guidance for designing next-generation single-crystalline cathodes for high-capacity, long-life LIBs.
ISSN:1530-6984
1530-6992
DOI:10.1021/acs.nanolett.1c03852