Nonreciprocal Frequency Domain Beam Splitter
The canonical beam splitter-a fundamental building block of quantum optical systems-is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transf...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-12, Vol.127 (25), p.253603-253603, Article 253603 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 253603 |
---|---|
container_issue | 25 |
container_start_page | 253603 |
container_title | Physical review letters |
container_volume | 127 |
creator | Otterstrom, Nils T Gertler, Shai Kittlaus, Eric A Gehl, Michael Starbuck, Andrew L Dallo, Christina M Pomerene, Andrew T Trotter, Douglas C Rakich, Peter T Davids, Paul S Lentine, Anthony L |
description | The canonical beam splitter-a fundamental building block of quantum optical systems-is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10^{-4}) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics. |
doi_str_mv | 10.1103/PhysRevLett.127.253603 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1834097</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2620082067</sourcerecordid><originalsourceid>FETCH-LOGICAL-c386t-9506a3eb32f1b5a767cdd6a39ebf67f19326b49e72d003970504e15fbf5aae183</originalsourceid><addsrcrecordid>eNpNkE1PwzAMhiMEYmPwF6aKEwc6nKRNmiMMBkgTID7OUZq6WlE_RpIh7d_TqQNxsmQ_tl89hEwpzCgFfvWy2vpX_F5iCDPK5IylXAA_IGMKUsWS0uSQjAE4jRWAHJET7z8BgDKRHZMRT4GphMGYXD51rUNbrV1nTR0tHH5tsLXb6LZrTNVGN2ia6G1dVyGgOyVHpak9nu3rhHws7t7nD_Hy-f5xfr2MLc9EiFUKwnDMOStpnhoppC2KvqMwL4UsqeJM5IlCyYo-oZKQQoI0LfMyNQZpxifkfLjb-VBpb6uAdmW7tkUbdD9PQMkeuhigPnqf2QfdVN5iXZsWu43XTDCAjIHYoWJAreu8d1jqtasa47aagt7p1P906l6nHnT2i9P9j03eYPG39uuP_wCzZ3IP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2620082067</pqid></control><display><type>article</type><title>Nonreciprocal Frequency Domain Beam Splitter</title><source>American Physical Society Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Otterstrom, Nils T ; Gertler, Shai ; Kittlaus, Eric A ; Gehl, Michael ; Starbuck, Andrew L ; Dallo, Christina M ; Pomerene, Andrew T ; Trotter, Douglas C ; Rakich, Peter T ; Davids, Paul S ; Lentine, Anthony L</creator><creatorcontrib>Otterstrom, Nils T ; Gertler, Shai ; Kittlaus, Eric A ; Gehl, Michael ; Starbuck, Andrew L ; Dallo, Christina M ; Pomerene, Andrew T ; Trotter, Douglas C ; Rakich, Peter T ; Davids, Paul S ; Lentine, Anthony L ; Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><description>The canonical beam splitter-a fundamental building block of quantum optical systems-is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10^{-4}) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.127.253603</identifier><identifier>PMID: 35029420</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY ; nonlinear optics ; photonics</subject><ispartof>Physical review letters, 2021-12, Vol.127 (25), p.253603-253603, Article 253603</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c386t-9506a3eb32f1b5a767cdd6a39ebf67f19326b49e72d003970504e15fbf5aae183</citedby><cites>FETCH-LOGICAL-c386t-9506a3eb32f1b5a767cdd6a39ebf67f19326b49e72d003970504e15fbf5aae183</cites><orcidid>0000-0001-6132-6360 ; 0000-0003-3656-7845 ; 0000-0002-4878-7805 ; 0000000161326360 ; 0000000248787805 ; 0000000336567845</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/35029420$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/servlets/purl/1834097$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Otterstrom, Nils T</creatorcontrib><creatorcontrib>Gertler, Shai</creatorcontrib><creatorcontrib>Kittlaus, Eric A</creatorcontrib><creatorcontrib>Gehl, Michael</creatorcontrib><creatorcontrib>Starbuck, Andrew L</creatorcontrib><creatorcontrib>Dallo, Christina M</creatorcontrib><creatorcontrib>Pomerene, Andrew T</creatorcontrib><creatorcontrib>Trotter, Douglas C</creatorcontrib><creatorcontrib>Rakich, Peter T</creatorcontrib><creatorcontrib>Davids, Paul S</creatorcontrib><creatorcontrib>Lentine, Anthony L</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><title>Nonreciprocal Frequency Domain Beam Splitter</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The canonical beam splitter-a fundamental building block of quantum optical systems-is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10^{-4}) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.</description><subject>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</subject><subject>nonlinear optics</subject><subject>photonics</subject><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkE1PwzAMhiMEYmPwF6aKEwc6nKRNmiMMBkgTID7OUZq6WlE_RpIh7d_TqQNxsmQ_tl89hEwpzCgFfvWy2vpX_F5iCDPK5IylXAA_IGMKUsWS0uSQjAE4jRWAHJET7z8BgDKRHZMRT4GphMGYXD51rUNbrV1nTR0tHH5tsLXb6LZrTNVGN2ia6G1dVyGgOyVHpak9nu3rhHws7t7nD_Hy-f5xfr2MLc9EiFUKwnDMOStpnhoppC2KvqMwL4UsqeJM5IlCyYo-oZKQQoI0LfMyNQZpxifkfLjb-VBpb6uAdmW7tkUbdD9PQMkeuhigPnqf2QfdVN5iXZsWu43XTDCAjIHYoWJAreu8d1jqtasa47aagt7p1P906l6nHnT2i9P9j03eYPG39uuP_wCzZ3IP</recordid><startdate>20211217</startdate><enddate>20211217</enddate><creator>Otterstrom, Nils T</creator><creator>Gertler, Shai</creator><creator>Kittlaus, Eric A</creator><creator>Gehl, Michael</creator><creator>Starbuck, Andrew L</creator><creator>Dallo, Christina M</creator><creator>Pomerene, Andrew T</creator><creator>Trotter, Douglas C</creator><creator>Rakich, Peter T</creator><creator>Davids, Paul S</creator><creator>Lentine, Anthony L</creator><general>American Physical Society (APS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-6132-6360</orcidid><orcidid>https://orcid.org/0000-0003-3656-7845</orcidid><orcidid>https://orcid.org/0000-0002-4878-7805</orcidid><orcidid>https://orcid.org/0000000161326360</orcidid><orcidid>https://orcid.org/0000000248787805</orcidid><orcidid>https://orcid.org/0000000336567845</orcidid></search><sort><creationdate>20211217</creationdate><title>Nonreciprocal Frequency Domain Beam Splitter</title><author>Otterstrom, Nils T ; Gertler, Shai ; Kittlaus, Eric A ; Gehl, Michael ; Starbuck, Andrew L ; Dallo, Christina M ; Pomerene, Andrew T ; Trotter, Douglas C ; Rakich, Peter T ; Davids, Paul S ; Lentine, Anthony L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c386t-9506a3eb32f1b5a767cdd6a39ebf67f19326b49e72d003970504e15fbf5aae183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY</topic><topic>nonlinear optics</topic><topic>photonics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otterstrom, Nils T</creatorcontrib><creatorcontrib>Gertler, Shai</creatorcontrib><creatorcontrib>Kittlaus, Eric A</creatorcontrib><creatorcontrib>Gehl, Michael</creatorcontrib><creatorcontrib>Starbuck, Andrew L</creatorcontrib><creatorcontrib>Dallo, Christina M</creatorcontrib><creatorcontrib>Pomerene, Andrew T</creatorcontrib><creatorcontrib>Trotter, Douglas C</creatorcontrib><creatorcontrib>Rakich, Peter T</creatorcontrib><creatorcontrib>Davids, Paul S</creatorcontrib><creatorcontrib>Lentine, Anthony L</creatorcontrib><creatorcontrib>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otterstrom, Nils T</au><au>Gertler, Shai</au><au>Kittlaus, Eric A</au><au>Gehl, Michael</au><au>Starbuck, Andrew L</au><au>Dallo, Christina M</au><au>Pomerene, Andrew T</au><au>Trotter, Douglas C</au><au>Rakich, Peter T</au><au>Davids, Paul S</au><au>Lentine, Anthony L</au><aucorp>Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Nonreciprocal Frequency Domain Beam Splitter</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2021-12-17</date><risdate>2021</risdate><volume>127</volume><issue>25</issue><spage>253603</spage><epage>253603</epage><pages>253603-253603</pages><artnum>253603</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The canonical beam splitter-a fundamental building block of quantum optical systems-is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25 dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10^{-4}) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><pmid>35029420</pmid><doi>10.1103/PhysRevLett.127.253603</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0001-6132-6360</orcidid><orcidid>https://orcid.org/0000-0003-3656-7845</orcidid><orcidid>https://orcid.org/0000-0002-4878-7805</orcidid><orcidid>https://orcid.org/0000000161326360</orcidid><orcidid>https://orcid.org/0000000248787805</orcidid><orcidid>https://orcid.org/0000000336567845</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-9007 |
ispartof | Physical review letters, 2021-12, Vol.127 (25), p.253603-253603, Article 253603 |
issn | 0031-9007 1079-7114 |
language | eng |
recordid | cdi_osti_scitechconnect_1834097 |
source | American Physical Society Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY nonlinear optics photonics |
title | Nonreciprocal Frequency Domain Beam Splitter |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T03%3A38%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Nonreciprocal%20Frequency%20Domain%20Beam%20Splitter&rft.jtitle=Physical%20review%20letters&rft.au=Otterstrom,%20Nils%20T&rft.aucorp=Sandia%20National%20Lab.%20(SNL-NM),%20Albuquerque,%20NM%20(United%20States)&rft.date=2021-12-17&rft.volume=127&rft.issue=25&rft.spage=253603&rft.epage=253603&rft.pages=253603-253603&rft.artnum=253603&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.127.253603&rft_dat=%3Cproquest_osti_%3E2620082067%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2620082067&rft_id=info:pmid/35029420&rfr_iscdi=true |