Nonreciprocal Frequency Domain Beam Splitter

The canonical beam splitter-a fundamental building block of quantum optical systems-is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transf...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2021-12, Vol.127 (25), p.253603-253603, Article 253603
Hauptverfasser: Otterstrom, Nils T, Gertler, Shai, Kittlaus, Eric A, Gehl, Michael, Starbuck, Andrew L, Dallo, Christina M, Pomerene, Andrew T, Trotter, Douglas C, Rakich, Peter T, Davids, Paul S, Lentine, Anthony L
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The canonical beam splitter-a fundamental building block of quantum optical systems-is a reciprocal element. It operates on forward- and backward-propagating modes in the same way, regardless of direction. The concept of nonreciprocal quantum photonic operations, by contrast, could be used to transform quantum states in a momentum- and direction-selective fashion. Here we demonstrate the basis for such a nonreciprocal transformation in the frequency domain through intermodal Bragg scattering four-wave mixing (BSFWM). Since the total number of idler and signal photons is conserved, the process can preserve coherence of quantum optical states, functioning as a nonreciprocal frequency beam splitter. We explore the origin of this nonreciprocity and find that the phase-matching requirements of intermodal BSFWM produce an enormous asymmetry (76×) in the conversion bandwidths for forward and backward configurations, yielding ∼25  dB of nonreciprocal contrast over several hundred GHz. We also outline how the demonstrated efficiencies (∼10^{-4}) may be scaled to near-unity values with readily accessible powers and pumping configurations for applications in integrated quantum photonics.
ISSN:0031-9007
1079-7114
DOI:10.1103/PhysRevLett.127.253603