Photodissociation and Infrared Spectroscopy of Uranium–Nitrogen Cation Complexes
Laser vaporization of uranium in a pulsed supersonic expansion of nitrogen is used to produce complexes of the form U+(N2)n (n = 1–8). These ions are mass selected in a reflectron time-of-flight spectrometer and studied with visible and UV laser fixed-frequency photodissociation and with tunable inf...
Gespeichert in:
Veröffentlicht in: | The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2021-08, Vol.125 (33), p.7278-7288 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Laser vaporization of uranium in a pulsed supersonic expansion of nitrogen is used to produce complexes of the form U+(N2)n (n = 1–8). These ions are mass selected in a reflectron time-of-flight spectrometer and studied with visible and UV laser fixed-frequency photodissociation and with tunable infrared laser photodissociation spectroscopy. The dissociation patterns and spectroscopy of U+(N2)n indicate that N2 ligands are intact molecules and that there is no insertion chemistry resulting in UN+ or NUN+. Fixed frequency photodissociation at 532 and 355 nm indicate that the U+–N2 bond dissociation energy varies little with changing coordination. The photon energy and the number of ligands eliminated allow an estimate of the average U+–N2 dissociation energy of 12 kcal/mol. Infrared bands are observed for these complexes near the N–N stretch vibration via elimination of N2 molecules. These resonances are observed to be shifted about 130 cm–1 to the red from the free-N2 frequency for complexes with n = 3–8. Density functional theory indicates that U+ is most stable in the sextet state in these complexes and that N2 molecules bind in end-on configurations. Furthermore, the fully coordinated complex is predicted to be U+(N2)8, which has a cubic structure. The vibrational frequencies predicted by theory are consistently lower than those in the experiment, independent of the isomeric structure or spin state of the complexes. Despite its failure to reproduce the infrared spectra, theory provides an average U+–N2 dissociation energy of 11.8 ± 0.5 kcal/mol, in good agreement with the value from the experiments. |
---|---|
ISSN: | 1089-5639 1520-5215 |
DOI: | 10.1021/acs.jpca.1c05823 |