Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere

The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe an...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications earth & environment 2021-05, Vol.2 (1), Article 93
Hauptverfasser: Nault, Benjamin A., Campuzano-Jost, Pedro, Day, Douglas A., Jo, Duseong S., Schroder, Jason C., Allen, Hannah M., Bahreini, Roya, Bian, Huisheng, Blake, Donald R., Chin, Mian, Clegg, Simon L., Colarco, Peter R., Crounse, John D., Cubison, Michael J., DeCarlo, Peter F., Dibb, Jack E., Diskin, Glenn S., Hodzic, Alma, Hu, Weiwei, Katich, Joseph M., Kim, Michelle J., Kodros, John K., Kupc, Agnieszka, Lopez-Hilfiker, Felipe D., Marais, Eloise A., Middlebrook, Ann M., Andrew Neuman, J., Nowak, John B., Palm, Brett B., Paulot, Fabien, Pierce, Jeffrey R., Schill, Gregory P., Scheuer, Eric, Thornton, Joel A., Tsigaridis, Kostas, Wennberg, Paul O., Williamson, Christina J., Jimenez, Jose L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title Communications earth & environment
container_volume 2
creator Nault, Benjamin A.
Campuzano-Jost, Pedro
Day, Douglas A.
Jo, Duseong S.
Schroder, Jason C.
Allen, Hannah M.
Bahreini, Roya
Bian, Huisheng
Blake, Donald R.
Chin, Mian
Clegg, Simon L.
Colarco, Peter R.
Crounse, John D.
Cubison, Michael J.
DeCarlo, Peter F.
Dibb, Jack E.
Diskin, Glenn S.
Hodzic, Alma
Hu, Weiwei
Katich, Joseph M.
Kim, Michelle J.
Kodros, John K.
Kupc, Agnieszka
Lopez-Hilfiker, Felipe D.
Marais, Eloise A.
Middlebrook, Ann M.
Andrew Neuman, J.
Nowak, John B.
Palm, Brett B.
Paulot, Fabien
Pierce, Jeffrey R.
Schill, Gregory P.
Scheuer, Eric
Thornton, Joel A.
Tsigaridis, Kostas
Wennberg, Paul O.
Williamson, Christina J.
Jimenez, Jose L.
description The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R 2  
doi_str_mv 10.1038/s43247-021-00164-0
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1831112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529244607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</originalsourceid><addsrcrecordid>eNpNkE1PxCAQhonRxI3uH_BE9FyFgZb2aDZ-JZt40TOhlG5ZW6jAHvbfy1oPnmaSeWYy74PQDSX3lLD6IXIGXBQEaEEIrXhBztAKqgoKzll5_q-_ROsY94QQKClQECv0tRnMZLUacQrKxdmHhCffmTFi3yfj8MF1JpiY7KSSwdb5sFPOaqxM8NGPWGnb2XTMExzM5DMTzM56d9rHaTBYpcnHechHrtFFr8Zo1n_1Cn0-P31sXovt-8vb5nFbaE4hFdAK2qiOmzpnoaVmLYhaKehYw6oGVNsxxnmvKKsY1KBbTbWqS8E0EaI3HbtCt8tdn9-WUdtk9KC9c0YnSWtGKYUM3S3QHPz3IQeUe38ILv8loYQGOK-IyBQslM5pYzC9nEM2EY6SEnmSLxf5MsuXv_IlYT_iiHgG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529244607</pqid></control><display><type>article</type><title>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Nault, Benjamin A. ; Campuzano-Jost, Pedro ; Day, Douglas A. ; Jo, Duseong S. ; Schroder, Jason C. ; Allen, Hannah M. ; Bahreini, Roya ; Bian, Huisheng ; Blake, Donald R. ; Chin, Mian ; Clegg, Simon L. ; Colarco, Peter R. ; Crounse, John D. ; Cubison, Michael J. ; DeCarlo, Peter F. ; Dibb, Jack E. ; Diskin, Glenn S. ; Hodzic, Alma ; Hu, Weiwei ; Katich, Joseph M. ; Kim, Michelle J. ; Kodros, John K. ; Kupc, Agnieszka ; Lopez-Hilfiker, Felipe D. ; Marais, Eloise A. ; Middlebrook, Ann M. ; Andrew Neuman, J. ; Nowak, John B. ; Palm, Brett B. ; Paulot, Fabien ; Pierce, Jeffrey R. ; Schill, Gregory P. ; Scheuer, Eric ; Thornton, Joel A. ; Tsigaridis, Kostas ; Wennberg, Paul O. ; Williamson, Christina J. ; Jimenez, Jose L.</creator><creatorcontrib>Nault, Benjamin A. ; Campuzano-Jost, Pedro ; Day, Douglas A. ; Jo, Duseong S. ; Schroder, Jason C. ; Allen, Hannah M. ; Bahreini, Roya ; Bian, Huisheng ; Blake, Donald R. ; Chin, Mian ; Clegg, Simon L. ; Colarco, Peter R. ; Crounse, John D. ; Cubison, Michael J. ; DeCarlo, Peter F. ; Dibb, Jack E. ; Diskin, Glenn S. ; Hodzic, Alma ; Hu, Weiwei ; Katich, Joseph M. ; Kim, Michelle J. ; Kodros, John K. ; Kupc, Agnieszka ; Lopez-Hilfiker, Felipe D. ; Marais, Eloise A. ; Middlebrook, Ann M. ; Andrew Neuman, J. ; Nowak, John B. ; Palm, Brett B. ; Paulot, Fabien ; Pierce, Jeffrey R. ; Schill, Gregory P. ; Scheuer, Eric ; Thornton, Joel A. ; Tsigaridis, Kostas ; Wennberg, Paul O. ; Williamson, Christina J. ; Jimenez, Jose L. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><description>The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R 2  &lt; 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.</description><identifier>ISSN: 2662-4435</identifier><identifier>EISSN: 2662-4435</identifier><identifier>DOI: 10.1038/s43247-021-00164-0</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Acidity ; Aerosols ; Airborne observation ; Aircraft ; Ammonium ; Atmosphere ; Atmospheric chemistry ; Atmospheric models ; Chemical transport ; Climate and Earth system modelling ; Cooling ; Cooling effects ; Environmental chemistry ; ENVIRONMENTAL SCIENCES ; Oceans ; Predictions ; Remote regions</subject><ispartof>Communications earth &amp; environment, 2021-05, Vol.2 (1), Article 93</ispartof><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</citedby><cites>FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</cites><orcidid>0000-0003-3096-7709 ; 0000-0003-3930-010X ; 0000-0002-3617-0269 ; 0000-0003-1791-0118 ; 0000-0003-3525-1662 ; 0000-0002-4084-0317 ; 0000-0002-7996-2506 ; 0000-0002-5697-9807 ; 0000-0002-6126-3854 ; 0000-0001-6385-7149 ; 0000-0001-5548-0812 ; 0000-0002-4241-838X ; 0000-0003-3384-8115 ; 0000-0002-5188-9378 ; 0000-0001-5443-729X ; 0000-0002-7794-1277 ; 0000-0001-8292-5338 ; 0000-0001-5328-819X ; 0000-0001-5477-8051 ; 0000-0001-6203-1847 ; 0000-0001-9464-4787 ; 0000-0002-2984-6304 ; 0000-0001-7534-4922 ; 0000000277941277 ; 0000000251889378 ; 0000000335251662 ; 0000000182925338 ; 0000000163857149 ; 0000000194644787 ; 000000015443729X ; 0000000256979807 ; 0000000236170269 ; 0000000333848115 ; 000000015328819X ; 0000000330967709 ; 0000000162031847 ; 0000000240840317 ; 0000000279962506 ; 0000000261263854 ; 0000000155480812 ; 0000000317910118 ; 0000000175344922 ; 0000000229846304 ; 0000000154778051 ; 000000024241838X ; 000000033930010X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,861,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1831112$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nault, Benjamin A.</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Day, Douglas A.</creatorcontrib><creatorcontrib>Jo, Duseong S.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Allen, Hannah M.</creatorcontrib><creatorcontrib>Bahreini, Roya</creatorcontrib><creatorcontrib>Bian, Huisheng</creatorcontrib><creatorcontrib>Blake, Donald R.</creatorcontrib><creatorcontrib>Chin, Mian</creatorcontrib><creatorcontrib>Clegg, Simon L.</creatorcontrib><creatorcontrib>Colarco, Peter R.</creatorcontrib><creatorcontrib>Crounse, John D.</creatorcontrib><creatorcontrib>Cubison, Michael J.</creatorcontrib><creatorcontrib>DeCarlo, Peter F.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Diskin, Glenn S.</creatorcontrib><creatorcontrib>Hodzic, Alma</creatorcontrib><creatorcontrib>Hu, Weiwei</creatorcontrib><creatorcontrib>Katich, Joseph M.</creatorcontrib><creatorcontrib>Kim, Michelle J.</creatorcontrib><creatorcontrib>Kodros, John K.</creatorcontrib><creatorcontrib>Kupc, Agnieszka</creatorcontrib><creatorcontrib>Lopez-Hilfiker, Felipe D.</creatorcontrib><creatorcontrib>Marais, Eloise A.</creatorcontrib><creatorcontrib>Middlebrook, Ann M.</creatorcontrib><creatorcontrib>Andrew Neuman, J.</creatorcontrib><creatorcontrib>Nowak, John B.</creatorcontrib><creatorcontrib>Palm, Brett B.</creatorcontrib><creatorcontrib>Paulot, Fabien</creatorcontrib><creatorcontrib>Pierce, Jeffrey R.</creatorcontrib><creatorcontrib>Schill, Gregory P.</creatorcontrib><creatorcontrib>Scheuer, Eric</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Wennberg, Paul O.</creatorcontrib><creatorcontrib>Williamson, Christina J.</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><title>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</title><title>Communications earth &amp; environment</title><description>The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R 2  &lt; 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.</description><subject>Acidity</subject><subject>Aerosols</subject><subject>Airborne observation</subject><subject>Aircraft</subject><subject>Ammonium</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric models</subject><subject>Chemical transport</subject><subject>Climate and Earth system modelling</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Environmental chemistry</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Oceans</subject><subject>Predictions</subject><subject>Remote regions</subject><issn>2662-4435</issn><issn>2662-4435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1PxCAQhonRxI3uH_BE9FyFgZb2aDZ-JZt40TOhlG5ZW6jAHvbfy1oPnmaSeWYy74PQDSX3lLD6IXIGXBQEaEEIrXhBztAKqgoKzll5_q-_ROsY94QQKClQECv0tRnMZLUacQrKxdmHhCffmTFi3yfj8MF1JpiY7KSSwdb5sFPOaqxM8NGPWGnb2XTMExzM5DMTzM56d9rHaTBYpcnHechHrtFFr8Zo1n_1Cn0-P31sXovt-8vb5nFbaE4hFdAK2qiOmzpnoaVmLYhaKehYw6oGVNsxxnmvKKsY1KBbTbWqS8E0EaI3HbtCt8tdn9-WUdtk9KC9c0YnSWtGKYUM3S3QHPz3IQeUe38ILv8loYQGOK-IyBQslM5pYzC9nEM2EY6SEnmSLxf5MsuXv_IlYT_iiHgG</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Nault, Benjamin A.</creator><creator>Campuzano-Jost, Pedro</creator><creator>Day, Douglas A.</creator><creator>Jo, Duseong S.</creator><creator>Schroder, Jason C.</creator><creator>Allen, Hannah M.</creator><creator>Bahreini, Roya</creator><creator>Bian, Huisheng</creator><creator>Blake, Donald R.</creator><creator>Chin, Mian</creator><creator>Clegg, Simon L.</creator><creator>Colarco, Peter R.</creator><creator>Crounse, John D.</creator><creator>Cubison, Michael J.</creator><creator>DeCarlo, Peter F.</creator><creator>Dibb, Jack E.</creator><creator>Diskin, Glenn S.</creator><creator>Hodzic, Alma</creator><creator>Hu, Weiwei</creator><creator>Katich, Joseph M.</creator><creator>Kim, Michelle J.</creator><creator>Kodros, John K.</creator><creator>Kupc, Agnieszka</creator><creator>Lopez-Hilfiker, Felipe D.</creator><creator>Marais, Eloise A.</creator><creator>Middlebrook, Ann M.</creator><creator>Andrew Neuman, J.</creator><creator>Nowak, John B.</creator><creator>Palm, Brett B.</creator><creator>Paulot, Fabien</creator><creator>Pierce, Jeffrey R.</creator><creator>Schill, Gregory P.</creator><creator>Scheuer, Eric</creator><creator>Thornton, Joel A.</creator><creator>Tsigaridis, Kostas</creator><creator>Wennberg, Paul O.</creator><creator>Williamson, Christina J.</creator><creator>Jimenez, Jose L.</creator><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0003-1791-0118</orcidid><orcidid>https://orcid.org/0000-0003-3525-1662</orcidid><orcidid>https://orcid.org/0000-0002-4084-0317</orcidid><orcidid>https://orcid.org/0000-0002-7996-2506</orcidid><orcidid>https://orcid.org/0000-0002-5697-9807</orcidid><orcidid>https://orcid.org/0000-0002-6126-3854</orcidid><orcidid>https://orcid.org/0000-0001-6385-7149</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0003-3384-8115</orcidid><orcidid>https://orcid.org/0000-0002-5188-9378</orcidid><orcidid>https://orcid.org/0000-0001-5443-729X</orcidid><orcidid>https://orcid.org/0000-0002-7794-1277</orcidid><orcidid>https://orcid.org/0000-0001-8292-5338</orcidid><orcidid>https://orcid.org/0000-0001-5328-819X</orcidid><orcidid>https://orcid.org/0000-0001-5477-8051</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0001-9464-4787</orcidid><orcidid>https://orcid.org/0000-0002-2984-6304</orcidid><orcidid>https://orcid.org/0000-0001-7534-4922</orcidid><orcidid>https://orcid.org/0000000277941277</orcidid><orcidid>https://orcid.org/0000000251889378</orcidid><orcidid>https://orcid.org/0000000335251662</orcidid><orcidid>https://orcid.org/0000000182925338</orcidid><orcidid>https://orcid.org/0000000163857149</orcidid><orcidid>https://orcid.org/0000000194644787</orcidid><orcidid>https://orcid.org/000000015443729X</orcidid><orcidid>https://orcid.org/0000000256979807</orcidid><orcidid>https://orcid.org/0000000236170269</orcidid><orcidid>https://orcid.org/0000000333848115</orcidid><orcidid>https://orcid.org/000000015328819X</orcidid><orcidid>https://orcid.org/0000000330967709</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000240840317</orcidid><orcidid>https://orcid.org/0000000279962506</orcidid><orcidid>https://orcid.org/0000000261263854</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/0000000317910118</orcidid><orcidid>https://orcid.org/0000000175344922</orcidid><orcidid>https://orcid.org/0000000229846304</orcidid><orcidid>https://orcid.org/0000000154778051</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid></search><sort><creationdate>20210514</creationdate><title>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</title><author>Nault, Benjamin A. ; Campuzano-Jost, Pedro ; Day, Douglas A. ; Jo, Duseong S. ; Schroder, Jason C. ; Allen, Hannah M. ; Bahreini, Roya ; Bian, Huisheng ; Blake, Donald R. ; Chin, Mian ; Clegg, Simon L. ; Colarco, Peter R. ; Crounse, John D. ; Cubison, Michael J. ; DeCarlo, Peter F. ; Dibb, Jack E. ; Diskin, Glenn S. ; Hodzic, Alma ; Hu, Weiwei ; Katich, Joseph M. ; Kim, Michelle J. ; Kodros, John K. ; Kupc, Agnieszka ; Lopez-Hilfiker, Felipe D. ; Marais, Eloise A. ; Middlebrook, Ann M. ; Andrew Neuman, J. ; Nowak, John B. ; Palm, Brett B. ; Paulot, Fabien ; Pierce, Jeffrey R. ; Schill, Gregory P. ; Scheuer, Eric ; Thornton, Joel A. ; Tsigaridis, Kostas ; Wennberg, Paul O. ; Williamson, Christina J. ; Jimenez, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acidity</topic><topic>Aerosols</topic><topic>Airborne observation</topic><topic>Aircraft</topic><topic>Ammonium</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric models</topic><topic>Chemical transport</topic><topic>Climate and Earth system modelling</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Environmental chemistry</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Oceans</topic><topic>Predictions</topic><topic>Remote regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nault, Benjamin A.</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Day, Douglas A.</creatorcontrib><creatorcontrib>Jo, Duseong S.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Allen, Hannah M.</creatorcontrib><creatorcontrib>Bahreini, Roya</creatorcontrib><creatorcontrib>Bian, Huisheng</creatorcontrib><creatorcontrib>Blake, Donald R.</creatorcontrib><creatorcontrib>Chin, Mian</creatorcontrib><creatorcontrib>Clegg, Simon L.</creatorcontrib><creatorcontrib>Colarco, Peter R.</creatorcontrib><creatorcontrib>Crounse, John D.</creatorcontrib><creatorcontrib>Cubison, Michael J.</creatorcontrib><creatorcontrib>DeCarlo, Peter F.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Diskin, Glenn S.</creatorcontrib><creatorcontrib>Hodzic, Alma</creatorcontrib><creatorcontrib>Hu, Weiwei</creatorcontrib><creatorcontrib>Katich, Joseph M.</creatorcontrib><creatorcontrib>Kim, Michelle J.</creatorcontrib><creatorcontrib>Kodros, John K.</creatorcontrib><creatorcontrib>Kupc, Agnieszka</creatorcontrib><creatorcontrib>Lopez-Hilfiker, Felipe D.</creatorcontrib><creatorcontrib>Marais, Eloise A.</creatorcontrib><creatorcontrib>Middlebrook, Ann M.</creatorcontrib><creatorcontrib>Andrew Neuman, J.</creatorcontrib><creatorcontrib>Nowak, John B.</creatorcontrib><creatorcontrib>Palm, Brett B.</creatorcontrib><creatorcontrib>Paulot, Fabien</creatorcontrib><creatorcontrib>Pierce, Jeffrey R.</creatorcontrib><creatorcontrib>Schill, Gregory P.</creatorcontrib><creatorcontrib>Scheuer, Eric</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Wennberg, Paul O.</creatorcontrib><creatorcontrib>Williamson, Christina J.</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Communications earth &amp; environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nault, Benjamin A.</au><au>Campuzano-Jost, Pedro</au><au>Day, Douglas A.</au><au>Jo, Duseong S.</au><au>Schroder, Jason C.</au><au>Allen, Hannah M.</au><au>Bahreini, Roya</au><au>Bian, Huisheng</au><au>Blake, Donald R.</au><au>Chin, Mian</au><au>Clegg, Simon L.</au><au>Colarco, Peter R.</au><au>Crounse, John D.</au><au>Cubison, Michael J.</au><au>DeCarlo, Peter F.</au><au>Dibb, Jack E.</au><au>Diskin, Glenn S.</au><au>Hodzic, Alma</au><au>Hu, Weiwei</au><au>Katich, Joseph M.</au><au>Kim, Michelle J.</au><au>Kodros, John K.</au><au>Kupc, Agnieszka</au><au>Lopez-Hilfiker, Felipe D.</au><au>Marais, Eloise A.</au><au>Middlebrook, Ann M.</au><au>Andrew Neuman, J.</au><au>Nowak, John B.</au><au>Palm, Brett B.</au><au>Paulot, Fabien</au><au>Pierce, Jeffrey R.</au><au>Schill, Gregory P.</au><au>Scheuer, Eric</au><au>Thornton, Joel A.</au><au>Tsigaridis, Kostas</au><au>Wennberg, Paul O.</au><au>Williamson, Christina J.</au><au>Jimenez, Jose L.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</atitle><jtitle>Communications earth &amp; environment</jtitle><date>2021-05-14</date><risdate>2021</risdate><volume>2</volume><issue>1</issue><artnum>93</artnum><issn>2662-4435</issn><eissn>2662-4435</eissn><abstract>The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R 2  &lt; 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s43247-021-00164-0</doi><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0003-1791-0118</orcidid><orcidid>https://orcid.org/0000-0003-3525-1662</orcidid><orcidid>https://orcid.org/0000-0002-4084-0317</orcidid><orcidid>https://orcid.org/0000-0002-7996-2506</orcidid><orcidid>https://orcid.org/0000-0002-5697-9807</orcidid><orcidid>https://orcid.org/0000-0002-6126-3854</orcidid><orcidid>https://orcid.org/0000-0001-6385-7149</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0003-3384-8115</orcidid><orcidid>https://orcid.org/0000-0002-5188-9378</orcidid><orcidid>https://orcid.org/0000-0001-5443-729X</orcidid><orcidid>https://orcid.org/0000-0002-7794-1277</orcidid><orcidid>https://orcid.org/0000-0001-8292-5338</orcidid><orcidid>https://orcid.org/0000-0001-5328-819X</orcidid><orcidid>https://orcid.org/0000-0001-5477-8051</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0001-9464-4787</orcidid><orcidid>https://orcid.org/0000-0002-2984-6304</orcidid><orcidid>https://orcid.org/0000-0001-7534-4922</orcidid><orcidid>https://orcid.org/0000000277941277</orcidid><orcidid>https://orcid.org/0000000251889378</orcidid><orcidid>https://orcid.org/0000000335251662</orcidid><orcidid>https://orcid.org/0000000182925338</orcidid><orcidid>https://orcid.org/0000000163857149</orcidid><orcidid>https://orcid.org/0000000194644787</orcidid><orcidid>https://orcid.org/000000015443729X</orcidid><orcidid>https://orcid.org/0000000256979807</orcidid><orcidid>https://orcid.org/0000000236170269</orcidid><orcidid>https://orcid.org/0000000333848115</orcidid><orcidid>https://orcid.org/000000015328819X</orcidid><orcidid>https://orcid.org/0000000330967709</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000240840317</orcidid><orcidid>https://orcid.org/0000000279962506</orcidid><orcidid>https://orcid.org/0000000261263854</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/0000000317910118</orcidid><orcidid>https://orcid.org/0000000175344922</orcidid><orcidid>https://orcid.org/0000000229846304</orcidid><orcidid>https://orcid.org/0000000154778051</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2662-4435
ispartof Communications earth & environment, 2021-05, Vol.2 (1), Article 93
issn 2662-4435
2662-4435
language eng
recordid cdi_osti_scitechconnect_1831112
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free
subjects Acidity
Aerosols
Airborne observation
Aircraft
Ammonium
Atmosphere
Atmospheric chemistry
Atmospheric models
Chemical transport
Climate and Earth system modelling
Cooling
Cooling effects
Environmental chemistry
ENVIRONMENTAL SCIENCES
Oceans
Predictions
Remote regions
title Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20transport%20models%20often%20underestimate%20inorganic%20aerosol%20acidity%20in%20remote%20regions%20of%20the%20atmosphere&rft.jtitle=Communications%20earth%20&%20environment&rft.au=Nault,%20Benjamin%20A.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Atmospheric%20Radiation%20Measurement%20(ARM)%20Data%20Center&rft.date=2021-05-14&rft.volume=2&rft.issue=1&rft.artnum=93&rft.issn=2662-4435&rft.eissn=2662-4435&rft_id=info:doi/10.1038/s43247-021-00164-0&rft_dat=%3Cproquest_osti_%3E2529244607%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529244607&rft_id=info:pmid/&rfr_iscdi=true