Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere
The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe an...
Gespeichert in:
Veröffentlicht in: | Communications earth & environment 2021-05, Vol.2 (1), Article 93 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Communications earth & environment |
container_volume | 2 |
creator | Nault, Benjamin A. Campuzano-Jost, Pedro Day, Douglas A. Jo, Duseong S. Schroder, Jason C. Allen, Hannah M. Bahreini, Roya Bian, Huisheng Blake, Donald R. Chin, Mian Clegg, Simon L. Colarco, Peter R. Crounse, John D. Cubison, Michael J. DeCarlo, Peter F. Dibb, Jack E. Diskin, Glenn S. Hodzic, Alma Hu, Weiwei Katich, Joseph M. Kim, Michelle J. Kodros, John K. Kupc, Agnieszka Lopez-Hilfiker, Felipe D. Marais, Eloise A. Middlebrook, Ann M. Andrew Neuman, J. Nowak, John B. Palm, Brett B. Paulot, Fabien Pierce, Jeffrey R. Schill, Gregory P. Scheuer, Eric Thornton, Joel A. Tsigaridis, Kostas Wennberg, Paul O. Williamson, Christina J. Jimenez, Jose L. |
description | The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R
2
|
doi_str_mv | 10.1038/s43247-021-00164-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1831112</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2529244607</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</originalsourceid><addsrcrecordid>eNpNkE1PxCAQhonRxI3uH_BE9FyFgZb2aDZ-JZt40TOhlG5ZW6jAHvbfy1oPnmaSeWYy74PQDSX3lLD6IXIGXBQEaEEIrXhBztAKqgoKzll5_q-_ROsY94QQKClQECv0tRnMZLUacQrKxdmHhCffmTFi3yfj8MF1JpiY7KSSwdb5sFPOaqxM8NGPWGnb2XTMExzM5DMTzM56d9rHaTBYpcnHechHrtFFr8Zo1n_1Cn0-P31sXovt-8vb5nFbaE4hFdAK2qiOmzpnoaVmLYhaKehYw6oGVNsxxnmvKKsY1KBbTbWqS8E0EaI3HbtCt8tdn9-WUdtk9KC9c0YnSWtGKYUM3S3QHPz3IQeUe38ILv8loYQGOK-IyBQslM5pYzC9nEM2EY6SEnmSLxf5MsuXv_IlYT_iiHgG</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2529244607</pqid></control><display><type>article</type><title>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Springer Nature OA Free Journals</source><source>Nature Free</source><creator>Nault, Benjamin A. ; Campuzano-Jost, Pedro ; Day, Douglas A. ; Jo, Duseong S. ; Schroder, Jason C. ; Allen, Hannah M. ; Bahreini, Roya ; Bian, Huisheng ; Blake, Donald R. ; Chin, Mian ; Clegg, Simon L. ; Colarco, Peter R. ; Crounse, John D. ; Cubison, Michael J. ; DeCarlo, Peter F. ; Dibb, Jack E. ; Diskin, Glenn S. ; Hodzic, Alma ; Hu, Weiwei ; Katich, Joseph M. ; Kim, Michelle J. ; Kodros, John K. ; Kupc, Agnieszka ; Lopez-Hilfiker, Felipe D. ; Marais, Eloise A. ; Middlebrook, Ann M. ; Andrew Neuman, J. ; Nowak, John B. ; Palm, Brett B. ; Paulot, Fabien ; Pierce, Jeffrey R. ; Schill, Gregory P. ; Scheuer, Eric ; Thornton, Joel A. ; Tsigaridis, Kostas ; Wennberg, Paul O. ; Williamson, Christina J. ; Jimenez, Jose L.</creator><creatorcontrib>Nault, Benjamin A. ; Campuzano-Jost, Pedro ; Day, Douglas A. ; Jo, Duseong S. ; Schroder, Jason C. ; Allen, Hannah M. ; Bahreini, Roya ; Bian, Huisheng ; Blake, Donald R. ; Chin, Mian ; Clegg, Simon L. ; Colarco, Peter R. ; Crounse, John D. ; Cubison, Michael J. ; DeCarlo, Peter F. ; Dibb, Jack E. ; Diskin, Glenn S. ; Hodzic, Alma ; Hu, Weiwei ; Katich, Joseph M. ; Kim, Michelle J. ; Kodros, John K. ; Kupc, Agnieszka ; Lopez-Hilfiker, Felipe D. ; Marais, Eloise A. ; Middlebrook, Ann M. ; Andrew Neuman, J. ; Nowak, John B. ; Palm, Brett B. ; Paulot, Fabien ; Pierce, Jeffrey R. ; Schill, Gregory P. ; Scheuer, Eric ; Thornton, Joel A. ; Tsigaridis, Kostas ; Wennberg, Paul O. ; Williamson, Christina J. ; Jimenez, Jose L. ; Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><description>The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R
2
< 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.</description><identifier>ISSN: 2662-4435</identifier><identifier>EISSN: 2662-4435</identifier><identifier>DOI: 10.1038/s43247-021-00164-0</identifier><language>eng</language><publisher>London: Nature Publishing Group</publisher><subject>Acidity ; Aerosols ; Airborne observation ; Aircraft ; Ammonium ; Atmosphere ; Atmospheric chemistry ; Atmospheric models ; Chemical transport ; Climate and Earth system modelling ; Cooling ; Cooling effects ; Environmental chemistry ; ENVIRONMENTAL SCIENCES ; Oceans ; Predictions ; Remote regions</subject><ispartof>Communications earth & environment, 2021-05, Vol.2 (1), Article 93</ispartof><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</citedby><cites>FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</cites><orcidid>0000-0003-3096-7709 ; 0000-0003-3930-010X ; 0000-0002-3617-0269 ; 0000-0003-1791-0118 ; 0000-0003-3525-1662 ; 0000-0002-4084-0317 ; 0000-0002-7996-2506 ; 0000-0002-5697-9807 ; 0000-0002-6126-3854 ; 0000-0001-6385-7149 ; 0000-0001-5548-0812 ; 0000-0002-4241-838X ; 0000-0003-3384-8115 ; 0000-0002-5188-9378 ; 0000-0001-5443-729X ; 0000-0002-7794-1277 ; 0000-0001-8292-5338 ; 0000-0001-5328-819X ; 0000-0001-5477-8051 ; 0000-0001-6203-1847 ; 0000-0001-9464-4787 ; 0000-0002-2984-6304 ; 0000-0001-7534-4922 ; 0000000277941277 ; 0000000251889378 ; 0000000335251662 ; 0000000182925338 ; 0000000163857149 ; 0000000194644787 ; 000000015443729X ; 0000000256979807 ; 0000000236170269 ; 0000000333848115 ; 000000015328819X ; 0000000330967709 ; 0000000162031847 ; 0000000240840317 ; 0000000279962506 ; 0000000261263854 ; 0000000155480812 ; 0000000317910118 ; 0000000175344922 ; 0000000229846304 ; 0000000154778051 ; 000000024241838X ; 000000033930010X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,861,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1831112$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nault, Benjamin A.</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Day, Douglas A.</creatorcontrib><creatorcontrib>Jo, Duseong S.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Allen, Hannah M.</creatorcontrib><creatorcontrib>Bahreini, Roya</creatorcontrib><creatorcontrib>Bian, Huisheng</creatorcontrib><creatorcontrib>Blake, Donald R.</creatorcontrib><creatorcontrib>Chin, Mian</creatorcontrib><creatorcontrib>Clegg, Simon L.</creatorcontrib><creatorcontrib>Colarco, Peter R.</creatorcontrib><creatorcontrib>Crounse, John D.</creatorcontrib><creatorcontrib>Cubison, Michael J.</creatorcontrib><creatorcontrib>DeCarlo, Peter F.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Diskin, Glenn S.</creatorcontrib><creatorcontrib>Hodzic, Alma</creatorcontrib><creatorcontrib>Hu, Weiwei</creatorcontrib><creatorcontrib>Katich, Joseph M.</creatorcontrib><creatorcontrib>Kim, Michelle J.</creatorcontrib><creatorcontrib>Kodros, John K.</creatorcontrib><creatorcontrib>Kupc, Agnieszka</creatorcontrib><creatorcontrib>Lopez-Hilfiker, Felipe D.</creatorcontrib><creatorcontrib>Marais, Eloise A.</creatorcontrib><creatorcontrib>Middlebrook, Ann M.</creatorcontrib><creatorcontrib>Andrew Neuman, J.</creatorcontrib><creatorcontrib>Nowak, John B.</creatorcontrib><creatorcontrib>Palm, Brett B.</creatorcontrib><creatorcontrib>Paulot, Fabien</creatorcontrib><creatorcontrib>Pierce, Jeffrey R.</creatorcontrib><creatorcontrib>Schill, Gregory P.</creatorcontrib><creatorcontrib>Scheuer, Eric</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Wennberg, Paul O.</creatorcontrib><creatorcontrib>Williamson, Christina J.</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><title>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</title><title>Communications earth & environment</title><description>The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R
2
< 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.</description><subject>Acidity</subject><subject>Aerosols</subject><subject>Airborne observation</subject><subject>Aircraft</subject><subject>Ammonium</subject><subject>Atmosphere</subject><subject>Atmospheric chemistry</subject><subject>Atmospheric models</subject><subject>Chemical transport</subject><subject>Climate and Earth system modelling</subject><subject>Cooling</subject><subject>Cooling effects</subject><subject>Environmental chemistry</subject><subject>ENVIRONMENTAL SCIENCES</subject><subject>Oceans</subject><subject>Predictions</subject><subject>Remote regions</subject><issn>2662-4435</issn><issn>2662-4435</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpNkE1PxCAQhonRxI3uH_BE9FyFgZb2aDZ-JZt40TOhlG5ZW6jAHvbfy1oPnmaSeWYy74PQDSX3lLD6IXIGXBQEaEEIrXhBztAKqgoKzll5_q-_ROsY94QQKClQECv0tRnMZLUacQrKxdmHhCffmTFi3yfj8MF1JpiY7KSSwdb5sFPOaqxM8NGPWGnb2XTMExzM5DMTzM56d9rHaTBYpcnHechHrtFFr8Zo1n_1Cn0-P31sXovt-8vb5nFbaE4hFdAK2qiOmzpnoaVmLYhaKehYw6oGVNsxxnmvKKsY1KBbTbWqS8E0EaI3HbtCt8tdn9-WUdtk9KC9c0YnSWtGKYUM3S3QHPz3IQeUe38ILv8loYQGOK-IyBQslM5pYzC9nEM2EY6SEnmSLxf5MsuXv_IlYT_iiHgG</recordid><startdate>20210514</startdate><enddate>20210514</enddate><creator>Nault, Benjamin A.</creator><creator>Campuzano-Jost, Pedro</creator><creator>Day, Douglas A.</creator><creator>Jo, Duseong S.</creator><creator>Schroder, Jason C.</creator><creator>Allen, Hannah M.</creator><creator>Bahreini, Roya</creator><creator>Bian, Huisheng</creator><creator>Blake, Donald R.</creator><creator>Chin, Mian</creator><creator>Clegg, Simon L.</creator><creator>Colarco, Peter R.</creator><creator>Crounse, John D.</creator><creator>Cubison, Michael J.</creator><creator>DeCarlo, Peter F.</creator><creator>Dibb, Jack E.</creator><creator>Diskin, Glenn S.</creator><creator>Hodzic, Alma</creator><creator>Hu, Weiwei</creator><creator>Katich, Joseph M.</creator><creator>Kim, Michelle J.</creator><creator>Kodros, John K.</creator><creator>Kupc, Agnieszka</creator><creator>Lopez-Hilfiker, Felipe D.</creator><creator>Marais, Eloise A.</creator><creator>Middlebrook, Ann M.</creator><creator>Andrew Neuman, J.</creator><creator>Nowak, John B.</creator><creator>Palm, Brett B.</creator><creator>Paulot, Fabien</creator><creator>Pierce, Jeffrey R.</creator><creator>Schill, Gregory P.</creator><creator>Scheuer, Eric</creator><creator>Thornton, Joel A.</creator><creator>Tsigaridis, Kostas</creator><creator>Wennberg, Paul O.</creator><creator>Williamson, Christina J.</creator><creator>Jimenez, Jose L.</creator><general>Nature Publishing Group</general><general>Springer Nature</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0003-1791-0118</orcidid><orcidid>https://orcid.org/0000-0003-3525-1662</orcidid><orcidid>https://orcid.org/0000-0002-4084-0317</orcidid><orcidid>https://orcid.org/0000-0002-7996-2506</orcidid><orcidid>https://orcid.org/0000-0002-5697-9807</orcidid><orcidid>https://orcid.org/0000-0002-6126-3854</orcidid><orcidid>https://orcid.org/0000-0001-6385-7149</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0003-3384-8115</orcidid><orcidid>https://orcid.org/0000-0002-5188-9378</orcidid><orcidid>https://orcid.org/0000-0001-5443-729X</orcidid><orcidid>https://orcid.org/0000-0002-7794-1277</orcidid><orcidid>https://orcid.org/0000-0001-8292-5338</orcidid><orcidid>https://orcid.org/0000-0001-5328-819X</orcidid><orcidid>https://orcid.org/0000-0001-5477-8051</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0001-9464-4787</orcidid><orcidid>https://orcid.org/0000-0002-2984-6304</orcidid><orcidid>https://orcid.org/0000-0001-7534-4922</orcidid><orcidid>https://orcid.org/0000000277941277</orcidid><orcidid>https://orcid.org/0000000251889378</orcidid><orcidid>https://orcid.org/0000000335251662</orcidid><orcidid>https://orcid.org/0000000182925338</orcidid><orcidid>https://orcid.org/0000000163857149</orcidid><orcidid>https://orcid.org/0000000194644787</orcidid><orcidid>https://orcid.org/000000015443729X</orcidid><orcidid>https://orcid.org/0000000256979807</orcidid><orcidid>https://orcid.org/0000000236170269</orcidid><orcidid>https://orcid.org/0000000333848115</orcidid><orcidid>https://orcid.org/000000015328819X</orcidid><orcidid>https://orcid.org/0000000330967709</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000240840317</orcidid><orcidid>https://orcid.org/0000000279962506</orcidid><orcidid>https://orcid.org/0000000261263854</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/0000000317910118</orcidid><orcidid>https://orcid.org/0000000175344922</orcidid><orcidid>https://orcid.org/0000000229846304</orcidid><orcidid>https://orcid.org/0000000154778051</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid></search><sort><creationdate>20210514</creationdate><title>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</title><author>Nault, Benjamin A. ; Campuzano-Jost, Pedro ; Day, Douglas A. ; Jo, Duseong S. ; Schroder, Jason C. ; Allen, Hannah M. ; Bahreini, Roya ; Bian, Huisheng ; Blake, Donald R. ; Chin, Mian ; Clegg, Simon L. ; Colarco, Peter R. ; Crounse, John D. ; Cubison, Michael J. ; DeCarlo, Peter F. ; Dibb, Jack E. ; Diskin, Glenn S. ; Hodzic, Alma ; Hu, Weiwei ; Katich, Joseph M. ; Kim, Michelle J. ; Kodros, John K. ; Kupc, Agnieszka ; Lopez-Hilfiker, Felipe D. ; Marais, Eloise A. ; Middlebrook, Ann M. ; Andrew Neuman, J. ; Nowak, John B. ; Palm, Brett B. ; Paulot, Fabien ; Pierce, Jeffrey R. ; Schill, Gregory P. ; Scheuer, Eric ; Thornton, Joel A. ; Tsigaridis, Kostas ; Wennberg, Paul O. ; Williamson, Christina J. ; Jimenez, Jose L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-2b719ad4e816415c3b278aa2d393692abd3344fa1363282cbc1ca8573c077fed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Acidity</topic><topic>Aerosols</topic><topic>Airborne observation</topic><topic>Aircraft</topic><topic>Ammonium</topic><topic>Atmosphere</topic><topic>Atmospheric chemistry</topic><topic>Atmospheric models</topic><topic>Chemical transport</topic><topic>Climate and Earth system modelling</topic><topic>Cooling</topic><topic>Cooling effects</topic><topic>Environmental chemistry</topic><topic>ENVIRONMENTAL SCIENCES</topic><topic>Oceans</topic><topic>Predictions</topic><topic>Remote regions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nault, Benjamin A.</creatorcontrib><creatorcontrib>Campuzano-Jost, Pedro</creatorcontrib><creatorcontrib>Day, Douglas A.</creatorcontrib><creatorcontrib>Jo, Duseong S.</creatorcontrib><creatorcontrib>Schroder, Jason C.</creatorcontrib><creatorcontrib>Allen, Hannah M.</creatorcontrib><creatorcontrib>Bahreini, Roya</creatorcontrib><creatorcontrib>Bian, Huisheng</creatorcontrib><creatorcontrib>Blake, Donald R.</creatorcontrib><creatorcontrib>Chin, Mian</creatorcontrib><creatorcontrib>Clegg, Simon L.</creatorcontrib><creatorcontrib>Colarco, Peter R.</creatorcontrib><creatorcontrib>Crounse, John D.</creatorcontrib><creatorcontrib>Cubison, Michael J.</creatorcontrib><creatorcontrib>DeCarlo, Peter F.</creatorcontrib><creatorcontrib>Dibb, Jack E.</creatorcontrib><creatorcontrib>Diskin, Glenn S.</creatorcontrib><creatorcontrib>Hodzic, Alma</creatorcontrib><creatorcontrib>Hu, Weiwei</creatorcontrib><creatorcontrib>Katich, Joseph M.</creatorcontrib><creatorcontrib>Kim, Michelle J.</creatorcontrib><creatorcontrib>Kodros, John K.</creatorcontrib><creatorcontrib>Kupc, Agnieszka</creatorcontrib><creatorcontrib>Lopez-Hilfiker, Felipe D.</creatorcontrib><creatorcontrib>Marais, Eloise A.</creatorcontrib><creatorcontrib>Middlebrook, Ann M.</creatorcontrib><creatorcontrib>Andrew Neuman, J.</creatorcontrib><creatorcontrib>Nowak, John B.</creatorcontrib><creatorcontrib>Palm, Brett B.</creatorcontrib><creatorcontrib>Paulot, Fabien</creatorcontrib><creatorcontrib>Pierce, Jeffrey R.</creatorcontrib><creatorcontrib>Schill, Gregory P.</creatorcontrib><creatorcontrib>Scheuer, Eric</creatorcontrib><creatorcontrib>Thornton, Joel A.</creatorcontrib><creatorcontrib>Tsigaridis, Kostas</creatorcontrib><creatorcontrib>Wennberg, Paul O.</creatorcontrib><creatorcontrib>Williamson, Christina J.</creatorcontrib><creatorcontrib>Jimenez, Jose L.</creatorcontrib><creatorcontrib>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Communications earth & environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nault, Benjamin A.</au><au>Campuzano-Jost, Pedro</au><au>Day, Douglas A.</au><au>Jo, Duseong S.</au><au>Schroder, Jason C.</au><au>Allen, Hannah M.</au><au>Bahreini, Roya</au><au>Bian, Huisheng</au><au>Blake, Donald R.</au><au>Chin, Mian</au><au>Clegg, Simon L.</au><au>Colarco, Peter R.</au><au>Crounse, John D.</au><au>Cubison, Michael J.</au><au>DeCarlo, Peter F.</au><au>Dibb, Jack E.</au><au>Diskin, Glenn S.</au><au>Hodzic, Alma</au><au>Hu, Weiwei</au><au>Katich, Joseph M.</au><au>Kim, Michelle J.</au><au>Kodros, John K.</au><au>Kupc, Agnieszka</au><au>Lopez-Hilfiker, Felipe D.</au><au>Marais, Eloise A.</au><au>Middlebrook, Ann M.</au><au>Andrew Neuman, J.</au><au>Nowak, John B.</au><au>Palm, Brett B.</au><au>Paulot, Fabien</au><au>Pierce, Jeffrey R.</au><au>Schill, Gregory P.</au><au>Scheuer, Eric</au><au>Thornton, Joel A.</au><au>Tsigaridis, Kostas</au><au>Wennberg, Paul O.</au><au>Williamson, Christina J.</au><au>Jimenez, Jose L.</au><aucorp>Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Atmospheric Radiation Measurement (ARM) Data Center</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere</atitle><jtitle>Communications earth & environment</jtitle><date>2021-05-14</date><risdate>2021</risdate><volume>2</volume><issue>1</issue><artnum>93</artnum><issn>2662-4435</issn><eissn>2662-4435</eissn><abstract>The inorganic fraction of fine particles affects numerous physicochemical processes in the atmosphere. However, there is large uncertainty in its burden and composition due to limited global measurements. Here, we present observations from eleven different aircraft campaigns from around the globe and investigate how aerosol pH and ammonium balance change from polluted to remote regions, such as over the oceans. Both parameters show increasing acidity with remoteness, at all altitudes, with pH decreasing from about 3 to about −1 and ammonium balance decreasing from almost 1 to nearly 0. We compare these observations against nine widely used chemical transport models and find that the simulations show more scatter (generally R
2
< 0.50) and typically predict less acidic aerosol in the most remote regions. These differences in observations and predictions are likely to result in underestimating the model-predicted direct radiative cooling effect for sulfate, nitrate, and ammonium aerosol by 15–39%.</abstract><cop>London</cop><pub>Nature Publishing Group</pub><doi>10.1038/s43247-021-00164-0</doi><orcidid>https://orcid.org/0000-0003-3096-7709</orcidid><orcidid>https://orcid.org/0000-0003-3930-010X</orcidid><orcidid>https://orcid.org/0000-0002-3617-0269</orcidid><orcidid>https://orcid.org/0000-0003-1791-0118</orcidid><orcidid>https://orcid.org/0000-0003-3525-1662</orcidid><orcidid>https://orcid.org/0000-0002-4084-0317</orcidid><orcidid>https://orcid.org/0000-0002-7996-2506</orcidid><orcidid>https://orcid.org/0000-0002-5697-9807</orcidid><orcidid>https://orcid.org/0000-0002-6126-3854</orcidid><orcidid>https://orcid.org/0000-0001-6385-7149</orcidid><orcidid>https://orcid.org/0000-0001-5548-0812</orcidid><orcidid>https://orcid.org/0000-0002-4241-838X</orcidid><orcidid>https://orcid.org/0000-0003-3384-8115</orcidid><orcidid>https://orcid.org/0000-0002-5188-9378</orcidid><orcidid>https://orcid.org/0000-0001-5443-729X</orcidid><orcidid>https://orcid.org/0000-0002-7794-1277</orcidid><orcidid>https://orcid.org/0000-0001-8292-5338</orcidid><orcidid>https://orcid.org/0000-0001-5328-819X</orcidid><orcidid>https://orcid.org/0000-0001-5477-8051</orcidid><orcidid>https://orcid.org/0000-0001-6203-1847</orcidid><orcidid>https://orcid.org/0000-0001-9464-4787</orcidid><orcidid>https://orcid.org/0000-0002-2984-6304</orcidid><orcidid>https://orcid.org/0000-0001-7534-4922</orcidid><orcidid>https://orcid.org/0000000277941277</orcidid><orcidid>https://orcid.org/0000000251889378</orcidid><orcidid>https://orcid.org/0000000335251662</orcidid><orcidid>https://orcid.org/0000000182925338</orcidid><orcidid>https://orcid.org/0000000163857149</orcidid><orcidid>https://orcid.org/0000000194644787</orcidid><orcidid>https://orcid.org/000000015443729X</orcidid><orcidid>https://orcid.org/0000000256979807</orcidid><orcidid>https://orcid.org/0000000236170269</orcidid><orcidid>https://orcid.org/0000000333848115</orcidid><orcidid>https://orcid.org/000000015328819X</orcidid><orcidid>https://orcid.org/0000000330967709</orcidid><orcidid>https://orcid.org/0000000162031847</orcidid><orcidid>https://orcid.org/0000000240840317</orcidid><orcidid>https://orcid.org/0000000279962506</orcidid><orcidid>https://orcid.org/0000000261263854</orcidid><orcidid>https://orcid.org/0000000155480812</orcidid><orcidid>https://orcid.org/0000000317910118</orcidid><orcidid>https://orcid.org/0000000175344922</orcidid><orcidid>https://orcid.org/0000000229846304</orcidid><orcidid>https://orcid.org/0000000154778051</orcidid><orcidid>https://orcid.org/000000024241838X</orcidid><orcidid>https://orcid.org/000000033930010X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2662-4435 |
ispartof | Communications earth & environment, 2021-05, Vol.2 (1), Article 93 |
issn | 2662-4435 2662-4435 |
language | eng |
recordid | cdi_osti_scitechconnect_1831112 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Springer Nature OA Free Journals; Nature Free |
subjects | Acidity Aerosols Airborne observation Aircraft Ammonium Atmosphere Atmospheric chemistry Atmospheric models Chemical transport Climate and Earth system modelling Cooling Cooling effects Environmental chemistry ENVIRONMENTAL SCIENCES Oceans Predictions Remote regions |
title | Chemical transport models often underestimate inorganic aerosol acidity in remote regions of the atmosphere |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T15%3A08%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Chemical%20transport%20models%20often%20underestimate%20inorganic%20aerosol%20acidity%20in%20remote%20regions%20of%20the%20atmosphere&rft.jtitle=Communications%20earth%20&%20environment&rft.au=Nault,%20Benjamin%20A.&rft.aucorp=Oak%20Ridge%20National%20Laboratory%20(ORNL),%20Oak%20Ridge,%20TN%20(United%20States).%20Atmospheric%20Radiation%20Measurement%20(ARM)%20Data%20Center&rft.date=2021-05-14&rft.volume=2&rft.issue=1&rft.artnum=93&rft.issn=2662-4435&rft.eissn=2662-4435&rft_id=info:doi/10.1038/s43247-021-00164-0&rft_dat=%3Cproquest_osti_%3E2529244607%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2529244607&rft_id=info:pmid/&rfr_iscdi=true |