Structure of Pseudomonas aeruginosa spermidine dehydrogenase: a polyamine oxidase with a novel heme‐binding fold
The opportunistic pathogen Pseudomonas aeruginosa can utilize polyamines (including putrescine, cadaverine, 4‐aminobutyrate, spermidine, and spermine) as its sole source of carbon and nitrogen. Spermidine dehydrogenase (SpdH) is a component of one of the two polyamine utilization pathways identified...
Gespeichert in:
Veröffentlicht in: | The FEBS journal 2021-11, Vol.289 (7) |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The opportunistic pathogen
Pseudomonas aeruginosa
can utilize polyamines (including putrescine, cadaverine, 4‐aminobutyrate, spermidine, and spermine) as its sole source of carbon and nitrogen. Spermidine dehydrogenase (SpdH) is a component of one of the two polyamine utilization pathways identified in
P
.
aeruginosa
, but little is known about its structure and function. Here, we report the first crystal structure of SpdH from
P
.
aeruginosa
to 1.85 Å resolution. The resulting core structure confirms that SpdH belongs to the polyamine oxidase (PAO) family with flavin‐binding and substrate‐binding domains. A unique N‐terminal extension wraps around the flavin‐binding domain of SpdH and is required for heme binding, placing a heme cofactor in close proximity to the FAD cofactor. Structural and mutational analysis reveals that residues in the putative active site at the re side of the FAD isoalloxazine ring form part of the catalytic machinery. PaSpdH features an unusual active site and lacks the conserved lysine that forms part of a lysine–water–flavin N5 atom interaction in other PAO enzymes characterized to date. Mutational analysis further confirms that heme is required for catalytic activity. This work provides an important starting point for understanding the role of SpdH, which occurs universally in
P
.
aeruginosa
strains, in polyamine metabolism. |
---|---|
ISSN: | 1742-464X 1742-4658 |