Astrophysical Explosions Revisited: Collisionless Coupling of Debris to Magnetized Plasma

The coupling between a rapidly expanding cloud of ionized debris and an ambient magnetized plasma is revisited with a hybrid (kinetic ion/fluid electron) simulation code that allows a study over a wide range of plasma parameters. Over a specified range of hypothetical conditions, simple scaling laws...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of geophysical research. Space physics 2021-09, Vol.126 (9)
Hauptverfasser: Le, Ari Yitzchak, Winske, Dan, Stanier, Adam John, Daughton, William Scott, Cowee, Misa, Wetherton, Blake Alastair, Guo, Fan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The coupling between a rapidly expanding cloud of ionized debris and an ambient magnetized plasma is revisited with a hybrid (kinetic ion/fluid electron) simulation code that allows a study over a wide range of plasma parameters. Over a specified range of hypothetical conditions, simple scaling laws in terms of the total debris mass and explosion speed are derived and verified for the maximal size of the debris cloud and the fraction of debris that free-streams from the burst along the magnetic field. Furthermore, the amount of debris that escapes from the burst with minimal coupling to the background magnetic field increases with the debris gyroradius. Test cases with two different debris species—including a heavy minority species with a relatively large gyroradius—highlight how the collisionless coupling of the debris depends on the single particle trajectories as well as the overall conservation of energy and momentum.
ISSN:2169-9380
2169-9402