Topological invariants of a filling-enforced quantum band insulator

Traditional ionic and covalent compound insulators arise from a commensuration between electron count and system volume. On the other hand, conventional topological insulators, outside of quantum Hall effect systems, do not typically display such a commensuration. Instead, they can undergo a phase t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2021-08, Vol.104 (8), p.1, Article 085128
Hauptverfasser: Krishnan, Abijith, Vishwanath, Ashvin, Po, Hoi Chun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Traditional ionic and covalent compound insulators arise from a commensuration between electron count and system volume. On the other hand, conventional topological insulators, outside of quantum Hall effect systems, do not typically display such a commensuration. Instead, they can undergo a phase transition to a trivial insulator that preserves the electron filling. Nevertheless, in some crystalline insulators, termed filling-enforced quantum band insulators (feQBIs), electron filling can dictate nontrivial topology in the insulating ground state. Currently, little is known about the relation between feQBIs and conventional topological invariants. In this work, we study such relations for a particularly interesting example of a half-filling feQBI that is realized in space group 106 with spinless electrons. We prove that any four-band feQBI in space group 106 with filling 2 must have a nontrivial topological invariant, namely, the Z2 glide invariant, and thus must have a quantized magnetoelectric polarizability θ = π . We thus have found a three-dimensional example where electron filling and band topology are tied. Such a locking raises intriguing questions about the generality of the band-inversion paradigm in describing the transition between trivial and topological phases.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.104.085128