Design and structural assessment of the Spallation Neutron Source 2.0 MW target

The Proton Power Upgrade (PPU) project is underway at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. The project will double the proton accelerator power from 1.4 MW to 2.8 MW, increase power to the First Target Station (FTS), and enable a future Second Target Station (STS). T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment Accelerators, spectrometers, detectors and associated equipment, 2021-12, Vol.1018 (1), p.165799, Article 165799
Hauptverfasser: Johns, Kevin, Mach, Justin, Gorti, Sarma, Jiang, Hao
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The Proton Power Upgrade (PPU) project is underway at the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory. The project will double the proton accelerator power from 1.4 MW to 2.8 MW, increase power to the First Target Station (FTS), and enable a future Second Target Station (STS). The power increase partly comes from raising proton energy from 1.0 GeV to 1.3 GeV. The STS will operate at 0.7 MW at 15 Hz when completed. Until then, PPU will provide the capability to operate the FTS at 2.0 MW at 60 Hz. Maximum power at the FTS to date has been 1.4 MW at 60 Hz with 1.0 GeV protons. A new mercury target module design to operate reliably under PPU conditions has been completed after a multi-year effort. The design philosophy and assessment of the structural analysis are described here. This target underwent an unprecedented design and analysis process for SNS using the latest engineering techniques and incorporating years of operating lessons and outcomes from R&D to meet structural design criteria. It also incorporates high-flow gas injection to further mitigate pulse fatigue stresses as well as cavitation damage to the mercury vessel.
ISSN:0168-9002
1872-9576
DOI:10.1016/j.nima.2021.165799