Transportation Fuel Resiliency: Case Study of Tampa Bay

Here, this case study presents findings from an analysis of the emergency preparation and response for Hurricane Irma, the most recent hurricane impacting the Tampa Bay region. The Tampa Bay region, in particular, is considered one of the most vulnerable areas in the United States to hurricanes and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research record 2021-09, Vol.2676 (1)
Hauptverfasser: Kolpakov, Alexander, Marie Sipiora, Austin, Johnson, Caley, Nobler, Erin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, this case study presents findings from an analysis of the emergency preparation and response for Hurricane Irma, the most recent hurricane impacting the Tampa Bay region. The Tampa Bay region, in particular, is considered one of the most vulnerable areas in the United States to hurricanes and severe tropical weather. A particular vulnerability stems from how all petroleum fuel comes to the area by marine transport through Port Tampa Bay, which can be (and has been in the past) impacted by hurricanes and tropical storms. The case study discussed in this paper covers previous fuel challenges, vulnerabilities, and lessons learned by key Tampa Bay public agency fleets during the past 10 years (mainly as a result of the most recent 2017 Hurricane Irma) to explore ways to improve the area’s resilience to natural disasters. Some of the strategies for fuel-supply resiliency include maintaining emergency fuel supply, prioritizing fuel use, strategically placing the assets around the region to help with recovery, investing in backup generators (including generators powered by alternative fuels), planning for redundancies in fuel supply networks, developing more efficient communication procedures between public fleets, hurricane preparedness-planning, and upgrading street drainage systems to reduce the threat of local flooding.
ISSN:0361-1981