A survey of numerical linear algebra methods utilizing mixed-precision arithmetic

The efficient utilization of mixed-precision numerical linear algebra algorithms can offer attractive acceleration to scientific computing applications. Especially with the hardware integration of low-precision special-function units designed for machine learning applications, the traditional numeri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The international journal of high performance computing applications 2021-07, Vol.35 (4), p.344-369
Hauptverfasser: Abdelfattah, Ahmad, Anzt, Hartwig, Boman, Erik G, Carson, Erin, Cojean, Terry, Dongarra, Jack, Fox, Alyson, Gates, Mark, Higham, Nicholas J, Li, Xiaoye S, Loe, Jennifer, Luszczek, Piotr, Pranesh, Srikara, Rajamanickam, Siva, Ribizel, Tobias, Smith, Barry F, Swirydowicz, Kasia, Thomas, Stephen, Tomov, Stanimire, Tsai, Yaohung M, Yang, Ulrike Meier
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The efficient utilization of mixed-precision numerical linear algebra algorithms can offer attractive acceleration to scientific computing applications. Especially with the hardware integration of low-precision special-function units designed for machine learning applications, the traditional numerical algorithms community urgently needs to reconsider the floating point formats used in the distinct operations to efficiently leverage the available compute power. In this work, we provide a comprehensive survey of mixed-precision numerical linear algebra routines, including the underlying concepts, theoretical background, and experimental results for both dense and sparse linear algebra problems.
ISSN:1094-3420
1741-2846
DOI:10.1177/10943420211003313