A universal quantum circuit design for periodical functions

We propose a universal quantum circuit design that can estimate any arbitrary one-dimensional periodic functions based on the corresponding Fourier expansion. The quantum circuit contains N-qubits to store the information on the different N-Fourier components and M + 2 auxiliary qubits with M = ⌈log...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2021-10, Vol.23 (10), p.103022
Hauptverfasser: Li, Junxu, Kais, Sabre
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a universal quantum circuit design that can estimate any arbitrary one-dimensional periodic functions based on the corresponding Fourier expansion. The quantum circuit contains N-qubits to store the information on the different N-Fourier components and M + 2 auxiliary qubits with M = ⌈log2 N⌉ for control operations. The desired output will be measured in the last qubit q N with a time complexity of the computation of \(O({N}^{2}{\lceil {\mathrm{log}}_{2}\enspace N\rceil }^{2})\), which leads to polynomial speedup under certain circumstances. We illustrate the approach by constructing the quantum circuit for the square wave function with accurate results obtained by direct simulations using the IBM-QASM simulator. The approach is general and can be applied to any arbitrary periodic function.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/ac2cb4