Cometabolic Vinyl Chloride Degradation at Acidic pH Catalyzed by Acidophilic Methanotrophs Isolated from Alpine Peat Bogs

Remediation of toxic chlorinated ethenes via microbial reductive dechlorination can lead to ethene formation; however, the process stalls in acidic groundwater, leading to the accumulation of carcinogenic vinyl chloride (VC). This study explored the feasibility of cometabolic VC degradation by moder...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2021-05, Vol.55 (9), p.5959-5969
Hauptverfasser: Choi, Munjeong, Yun, Taeho, Song, Min Joon, Kim, Jisun, Lee, Byoung-Hee, Löffler, Frank E, Yoon, Sukhwan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Remediation of toxic chlorinated ethenes via microbial reductive dechlorination can lead to ethene formation; however, the process stalls in acidic groundwater, leading to the accumulation of carcinogenic vinyl chloride (VC). This study explored the feasibility of cometabolic VC degradation by moderately acidophilic methanotrophs. Two novel isolates, Methylomonas sp. strain JS1 and Methylocystis sp. strain MJC1, were obtained from distinct alpine peat bogs located in South Korea. Both isolates cometabolized VC with CH4 as the primary substrate under oxic conditions at pH at or below 5.5. VC cometabolism in axenic cultures occurred in the presence (10 μM) or absence (
ISSN:0013-936X
1520-5851
DOI:10.1021/acs.est.0c08766