Gasoline Compression Ignition on a Light-Duty Multi-Cylinder Engine Using a Wide Range of Fuel Reactivities and Heavy Fuel Stratification

Many research studies have focused on utilizing gasoline in modern compression ignition engines to reduce emissions and improve efficiency. Collectively, this combustion mode has become kn+own as gasoline compression ignition (GCI). One of the biggest challenges with GCI operation is maintaining con...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of energy resources technology 2021-09, Vol.143 (9)
Hauptverfasser: Dempsey, Adam B, Curran, Scott, Wagner, Robert, Cannella, William, Ickes, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Many research studies have focused on utilizing gasoline in modern compression ignition engines to reduce emissions and improve efficiency. Collectively, this combustion mode has become kn+own as gasoline compression ignition (GCI). One of the biggest challenges with GCI operation is maintaining control over the combustion process through the fuel injection strategy, such that the engine can be controlled on a cycle-by-cycle basis. Research studies have investigated a wide variety of GCI injection strategies (i.e., fuel stratification levels) to maintain control over the heat release rate while achieving low-temperature combustion (LTC). This work shows that at loads relevant to light-duty engines, partial fuel stratification (PFS) with gasoline provides very little controllability over the timing of combustion. On the contrary, heavy fuel stratification (HFS) provides very linear and pronounced control over the timing of combustion. However, the HFS strategy has challenges achieving LTC operation due to the air handling burdens associated with the high exhaust gas recirculation (EGR) rates that are required to reduce NOx emissions to near zero levels. In this work, a wide variety of gasoline fuel reactivities (octane numbers ranging from
ISSN:0195-0738
1528-8994
DOI:10.1115/1.4050742