Mechanisms of surface contamination in fused silica by means of laser-induced electrostatic effects

We demonstrate that fused-silica samples exposed to nanosecond laser pulses at 355 nm and 1064 nm develop long-lived electrostatic charges on their surfaces. These charges extend well beyond the area exposed to the laser beam. The results suggest this effect is dependent on laser fluence and wavelen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics letters 2017-07, Vol.42 (13), p.2643-2646
Hauptverfasser: Demos, S G, Carr, C W, Cross, D A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We demonstrate that fused-silica samples exposed to nanosecond laser pulses at 355 nm and 1064 nm develop long-lived electrostatic charges on their surfaces. These charges extend well beyond the area exposed to the laser beam. The results suggest this effect is dependent on laser fluence and wavelength. In addition, ejected particles generated during laser-induced breakdown are electrostatically charged. Experiments indicate that such electrostatic charges can produce forces that can support the transport of dielectric and metallic microspheres between surfaces. This in turn can promote increased contamination of optical components during operation at relevant excitation conditions.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.42.002643