Localized strain profile in surface electrode array for programmable composite multiferroic devices

In this work, we investigate localized in-plane strains on the microscale, induced by arrays of biased surface electrodes patterned on piezoelectrics. Particular focus is given to the influence that adjacent electrode pairs have on one another to study the impact of densely packed electrode arrays....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied physics letters 2021-05, Vol.118 (18)
Hauptverfasser: Xiao, Zhuyun, Lai, Chelsea, Zheng, Ruoda, Goiriena-Goikoetxea, Maite, Tamura, Nobumichi, Juarez, Cornelio Torres, Perry, Colin, Singh, Hanuman, Bokor, Jeffrey, Carman, Gregory P., Candler, Rob N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this work, we investigate localized in-plane strains on the microscale, induced by arrays of biased surface electrodes patterned on piezoelectrics. Particular focus is given to the influence that adjacent electrode pairs have on one another to study the impact of densely packed electrode arrays. We present a series of X-ray microdiffraction studies to reveal the spatially resolved micrometer-scale strain distribution. The strain maps with micrometer-scale resolution highlight how the local strain profile in square regions up to 250 x 250 lm2 in size is affected by the surface electrodes that are patterned on ferroelectric single-crystal [Pb(Mg1/3Nb2/3)O3]x-[PbTiO3]1-x. The experimental measurements and simulation results show the influence of electrode pair distance, positioning of the electrode pair, including the angle of placement, and neighboring electrode pair arrangements on the strength and direction of the regional strain. Our findings are relevant to the development of microarchitected strain-mediated multiferroic devices. The electrode arrays could provide array-addressable localized strain control for applications including straintronic memory, probabilistic computing platforms, microwave devices, and magnetic-activated cell sorting platforms.
ISSN:0003-6951
1077-3118