Picoseconds-Limited Exciton Recombination in Metal–Organic Chalcogenides Hybrid Quantum Wells
Metal–organic species can be designed to self-assemble in large-scale, atomically defined, supramolecular architectures. A particular example is hybrid quantum wells, where inorganic two-dimensional (2D) planes are separated by organic ligands. The ligands effectively form an intralayer confinement...
Gespeichert in:
Veröffentlicht in: | ACS nano 2022-03, Vol.16 (3), p.3715-3722 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metal–organic species can be designed to self-assemble in large-scale, atomically defined, supramolecular architectures. A particular example is hybrid quantum wells, where inorganic two-dimensional (2D) planes are separated by organic ligands. The ligands effectively form an intralayer confinement for charge carriers resulting in a 2D electronic structure, even in multilayered assemblies. Air-stable layered transition metal organic chalcogenides have recently been found to host tightly bound 2D excitons with strong optical anisotropy in a bulk matrix. Here, we investigate the excited carrier dynamics in the prototypical metal–organic chalcogenide [AgSePh]∞, disentangling three excitonic resonances by low temperature transient absorption spectroscopy. Our analysis suggests a complex relaxation cascade comprising ultrafast screening and renormalization, interexciton relaxation, and self-trapping of excitons within a few picoseconds (ps). The ps-decay provided by the self-trapping mechanism may be leveraged to unlock the material’s potential for ultrafast optoelectronic applications. |
---|---|
ISSN: | 1936-0851 1936-086X |
DOI: | 10.1021/acsnano.1c07281 |