Effects of cryogenic temperature and grain size on fatigue-crack propagation in the medium-entropy CrCoNi alloy
CrCoNi-based high-entropy alloys have demonstrated outstanding mechanical properties, particularly at cryogenic temperatures. Here we investigate the fatigue-crack propagation properties of the equiatomic, single-phase, face-centered cubic, medium-entropy alloy (MEA), CrCoNi, that displays exception...
Gespeichert in:
Veröffentlicht in: | Acta materialia 2020-11, Vol.200 (C), p.351-365 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | CrCoNi-based high-entropy alloys have demonstrated outstanding mechanical properties, particularly at cryogenic temperatures. Here we investigate the fatigue-crack propagation properties of the equiatomic, single-phase, face-centered cubic, medium-entropy alloy (MEA), CrCoNi, that displays exceptional strength, ductility and toughness, all of which are enhanced at cryogenic temperatures. Fatigue-crack growth is examined, at a load ratio of 0.1 over a wide range of growth rates, from ~10−11 to >10−7 m/cycle, at room (293 K) and cryogenic (198 K, 77 K) temperatures for two grain sizes (~7 and 68 µm), with emphasis on near-threshold behavior. We find that the ΔKth fatigue thresholds are increased with decreasing temperature and increasing grain size: from 5.7 MPa√m at 293 K to 8 MPa√m at 77 K in the fine-grained alloy, and from 9.4 MPa√m at 293 K to 13.7 MPa√m at 77 K in the coarse-grained alloy. Mechanistically, transgranular cracking at 293 K transitions to a mixture of intergranular and transgranular at cryogenic temperatures, where the increased propensity of nano-twins appears to inhibit growth rates by deflecting the crack path. However, the main factor affecting near-threshold behavior is roughness-induced crack closure from interference between the crack flanks, which is enhanced by the rougher fracture surfaces at low temperatures, particularly in the coarser-grained microstructure. Fatigue-crack propagation behavior in CrCoNi is comparable to nickel-based superalloys but is superior to that of the high-entropy CrMnFeCoNi (Cantor) alloy and many high-strength steels, making the CrCoNi alloy an excellent candidate material for safety-critical applications, particularly involving low temperatures.
[Display omitted] |
---|---|
ISSN: | 1359-6454 1873-2453 |
DOI: | 10.1016/j.actamat.2020.09.021 |