System-on-chip upgrade of millimeter-wave imaging diagnostics for fusion plasma

Monolithic, millimeter wave “system-on-chip” technology has been employed in chip heterodyne radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature and fluctuation diagnostics. The system employs 20 horn-waveguide receiver...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Review of scientific instruments 2021-05, Vol.92 (5)
Hauptverfasser: Zhu, Y., Yu, J. -H., Yu, G., Ye, Y., Chen, Y., Tobias, B., Diallo, A., Kramer, G., Ren, Y., Tang, W., Dong, G., Churchill, R., Domier, C. W., Li, X., Luo, C., Chen, M., Luhmann, N. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Monolithic, millimeter wave “system-on-chip” technology has been employed in chip heterodyne radiometers in a newly developed Electron Cyclotron Emission Imaging (ECEI) system on the DIII-D tokamak for 2D electron temperature and fluctuation diagnostics. The system employs 20 horn-waveguide receiver modules each with customized W-band (75–110 GHz) monolithic microwave integrated circuit chips comprising a W-band low noise amplifier, a balanced mixer, a ×2 local oscillator (LO) frequency doubler, and two intermediate frequency amplifier stages in each module. Compared to previous quasi-optical ECEI arrays with Schottky mixer diodes mounted on planar antennas, the upgraded W-band array exhibits >30 dB additional gain and 20× improvement in noise temperature; an internal eight times multiplier chain is used to provide LO coupling, thereby eliminating the need for quasi-optical coupling. The horn-waveguide shielding housing avoids out-of-band noise interference on each module. The upgraded ECEI system plays an important role for absolute electron temperature and fluctuation measurements for edge and core region transport physics studies. An F-band receiver chip (up to 140 GHz) is under development for additional fusion facilities with a higher toroidal magnetic field. Visualization diagnostics provide multi-scale and multi-dimensional data in plasma profile evolution. Finally, a significant aspect of imaging measurement is focusing on artificial intelligence for science applications.
ISSN:0034-6748
1089-7623