Quasisymmetric Optimization of Nonaxisymmetry in Tokamaks
Predictive 3D optimization reveals a novel approach to modify a nonaxisymmetric magnetic perturbation to be entirely harmless for tokamaks, by essentially restoring quasisymmetry in perturbed particle orbits as much as possible. Such a quasisymmetric magnetic perturbation (QSMP) has been designed an...
Gespeichert in:
Veröffentlicht in: | Physical review letters 2021-03, Vol.126 (12), p.125001-125001, Article 125001 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Predictive 3D optimization reveals a novel approach to modify a nonaxisymmetric magnetic perturbation to be entirely harmless for tokamaks, by essentially restoring quasisymmetry in perturbed particle orbits as much as possible. Such a quasisymmetric magnetic perturbation (QSMP) has been designed and successfully tested in the KSTAR and DIII-D tokamaks, demonstrating no performance degradation despite the large overall amplitudes of nonaxisymmetric fields and strong response otherwise expected in the tested plasmas. The results indicate that a quasisymmetric optimization is a robust path of error field correction across the resonant and nonresonant field spectrum in a tokamak, leveraging the prevailing concept of quasisymmetry for general 3D plasma confinement systems such as stellarators. The optimization becomes, in fact, a simple eigenvalue problem to the so-called torque response matrices if a perturbed equilibrium is calculated consistent with nonaxisymmetric neoclassical transport. |
---|---|
ISSN: | 0031-9007 1079-7114 |
DOI: | 10.1103/PhysRevLett.126.125001 |