Review of Wind–Wave Coupling Models for Large-Eddy Simulation of the Marine Atmospheric Boundary Layer
We present a review of existing wind–wave coupling models and parameterizations used for large-eddy simulation of the marine atmospheric boundary layer. The models are classified into two main categories: (i) the wave-phase-averaged, sea surface–roughness models and (ii) the wave-phase-resolved mode...
Gespeichert in:
Veröffentlicht in: | Journal of the atmospheric sciences 2021-10, Vol.78 (10), p.3025-3045 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We present a review of existing wind–wave coupling models and parameterizations used for large-eddy simulation of the marine atmospheric boundary layer. The models are classified into two main categories: (i) the wave-phase-averaged, sea surface–roughness models and (ii) the wave-phase-resolved models. Both categories are discussed from their implementation, validity, and computational efficiency viewpoints, with emphasis given on their applicability in offshore wind energy problems. In addition to the various models discussed, a review of laboratory-scale and field-measurement databases is presented thereafter. The majority of the presented data have been gathered over many decades of studying air–sea interaction phenomena, with the most recent ones compiled to reflect an offshore wind energy perspective. Both provide valuable data for model validation. We also discuss the modeling knowledge gaps and computational challenges ahead. |
---|---|
ISSN: | 0022-4928 1520-0469 |
DOI: | 10.1175/JAS-D-21-0003.1 |