Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation
Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, r...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-09, Vol.13 (9), p.902-908 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 908 |
---|---|
container_issue | 9 |
container_start_page | 902 |
container_title | Nature chemistry |
container_volume | 13 |
creator | Li, Beryl X. Kim, Daniel K. Bloom, Steven Huang, Richard Y.-C. Qiao, Jennifer X. Ewing, William R. Oblinsky, Daniel G. Scholes, Gregory D. MacMillan, David W. C. |
description | Abstact
The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction.
Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products. |
doi_str_mv | 10.1038/s41557-021-00733-y |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1805171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572354074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</originalsourceid><addsrcrecordid>eNp9kT1PwzAURSMEEqXwB5gsWFgMdvyVjKjiS0JiAGbLcZzWVWoX263Iv8dtEEgMTH7DuVc-7xXFOUbXGJHqJlLMmICoxBAhQQgcDooJFoxBSmh9-DMTdFycxLhEiDOC-aQIrzYZGE1vdLJbA9IQfLTOgMZ67d1yM1fJege2VoH1wicfTOs_gVZJ9UO0EXQ-AKd2WZg8zCkf0sLPvVM9WAefjHUgBeViBlf7rtPiqFN9NGff77R4v797mz3C55eHp9ntM9S0qhPkhKNK0KalvMGia7Kb4AYLUdU14Uxw3DYlU4jVrNRd2-mmyUsgXUVMVRtRkWlxMfb6mKyMOovqRXZyWVXiCjEscIauRij_9WNjYpIrG7Xpe-WM30RZMspZXTNCMnr5B136TcieO0qUhFEkaKbKkdJ5kTGYTq6DXakwSIzk7lZyvJXMPnJ_KznkEBlDMcNubsJv9T-pLz8dmVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572354074</pqid></control><display><type>article</type><title>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Li, Beryl X. ; Kim, Daniel K. ; Bloom, Steven ; Huang, Richard Y.-C. ; Qiao, Jennifer X. ; Ewing, William R. ; Oblinsky, Daniel G. ; Scholes, Gregory D. ; MacMillan, David W. C.</creator><creatorcontrib>Li, Beryl X. ; Kim, Daniel K. ; Bloom, Steven ; Huang, Richard Y.-C. ; Qiao, Jennifer X. ; Ewing, William R. ; Oblinsky, Daniel G. ; Scholes, Gregory D. ; MacMillan, David W. C. ; Princeton Univ., NJ (United States)</creatorcontrib><description>Abstact
The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction.
Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00733-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/933 ; 639/638/549/933 ; 639/638/77/890 ; 639/638/92/2783 ; Aldehydes ; Alkynes ; Amino acids ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemical modification ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Conjugates ; Fluorescence ; Genetic engineering ; Genetic transformation ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Labeling ; Organic Chemistry ; Photoredox catalysis ; Physical Chemistry ; Proteins ; Regioselectivity ; Selectivity ; Tyrosine</subject><ispartof>Nature chemistry, 2021-09, Vol.13 (9), p.902-908</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</citedby><cites>FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</cites><orcidid>0000-0001-7460-8260 ; 0000-0002-7172-110X ; 0000-0002-6685-2092 ; 0000-0003-3336-7960 ; 0000-0003-3352-4532 ; 0000000333524532 ; 000000027172110X ; 0000000266852092 ; 0000000333367960 ; 0000000174608260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27925,27926</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1805171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Beryl X.</creatorcontrib><creatorcontrib>Kim, Daniel K.</creatorcontrib><creatorcontrib>Bloom, Steven</creatorcontrib><creatorcontrib>Huang, Richard Y.-C.</creatorcontrib><creatorcontrib>Qiao, Jennifer X.</creatorcontrib><creatorcontrib>Ewing, William R.</creatorcontrib><creatorcontrib>Oblinsky, Daniel G.</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>MacMillan, David W. C.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Abstact
The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction.
Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.</description><subject>639/638/403/933</subject><subject>639/638/549/933</subject><subject>639/638/77/890</subject><subject>639/638/92/2783</subject><subject>Aldehydes</subject><subject>Alkynes</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemical modification</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Conjugates</subject><subject>Fluorescence</subject><subject>Genetic engineering</subject><subject>Genetic transformation</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Labeling</subject><subject>Organic Chemistry</subject><subject>Photoredox catalysis</subject><subject>Physical Chemistry</subject><subject>Proteins</subject><subject>Regioselectivity</subject><subject>Selectivity</subject><subject>Tyrosine</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1PwzAURSMEEqXwB5gsWFgMdvyVjKjiS0JiAGbLcZzWVWoX263Iv8dtEEgMTH7DuVc-7xXFOUbXGJHqJlLMmICoxBAhQQgcDooJFoxBSmh9-DMTdFycxLhEiDOC-aQIrzYZGE1vdLJbA9IQfLTOgMZ67d1yM1fJege2VoH1wicfTOs_gVZJ9UO0EXQ-AKd2WZg8zCkf0sLPvVM9WAefjHUgBeViBlf7rtPiqFN9NGff77R4v797mz3C55eHp9ntM9S0qhPkhKNK0KalvMGia7Kb4AYLUdU14Uxw3DYlU4jVrNRd2-mmyUsgXUVMVRtRkWlxMfb6mKyMOovqRXZyWVXiCjEscIauRij_9WNjYpIrG7Xpe-WM30RZMspZXTNCMnr5B136TcieO0qUhFEkaKbKkdJ5kTGYTq6DXakwSIzk7lZyvJXMPnJ_KznkEBlDMcNubsJv9T-pLz8dmVk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Beryl X.</creator><creator>Kim, Daniel K.</creator><creator>Bloom, Steven</creator><creator>Huang, Richard Y.-C.</creator><creator>Qiao, Jennifer X.</creator><creator>Ewing, William R.</creator><creator>Oblinsky, Daniel G.</creator><creator>Scholes, Gregory D.</creator><creator>MacMillan, David W. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7460-8260</orcidid><orcidid>https://orcid.org/0000-0002-7172-110X</orcidid><orcidid>https://orcid.org/0000-0002-6685-2092</orcidid><orcidid>https://orcid.org/0000-0003-3336-7960</orcidid><orcidid>https://orcid.org/0000-0003-3352-4532</orcidid><orcidid>https://orcid.org/0000000333524532</orcidid><orcidid>https://orcid.org/000000027172110X</orcidid><orcidid>https://orcid.org/0000000266852092</orcidid><orcidid>https://orcid.org/0000000333367960</orcidid><orcidid>https://orcid.org/0000000174608260</orcidid></search><sort><creationdate>20210901</creationdate><title>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</title><author>Li, Beryl X. ; Kim, Daniel K. ; Bloom, Steven ; Huang, Richard Y.-C. ; Qiao, Jennifer X. ; Ewing, William R. ; Oblinsky, Daniel G. ; Scholes, Gregory D. ; MacMillan, David W. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/403/933</topic><topic>639/638/549/933</topic><topic>639/638/77/890</topic><topic>639/638/92/2783</topic><topic>Aldehydes</topic><topic>Alkynes</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemical modification</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Conjugates</topic><topic>Fluorescence</topic><topic>Genetic engineering</topic><topic>Genetic transformation</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Labeling</topic><topic>Organic Chemistry</topic><topic>Photoredox catalysis</topic><topic>Physical Chemistry</topic><topic>Proteins</topic><topic>Regioselectivity</topic><topic>Selectivity</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Beryl X.</creatorcontrib><creatorcontrib>Kim, Daniel K.</creatorcontrib><creatorcontrib>Bloom, Steven</creatorcontrib><creatorcontrib>Huang, Richard Y.-C.</creatorcontrib><creatorcontrib>Qiao, Jennifer X.</creatorcontrib><creatorcontrib>Ewing, William R.</creatorcontrib><creatorcontrib>Oblinsky, Daniel G.</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>MacMillan, David W. C.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Beryl X.</au><au>Kim, Daniel K.</au><au>Bloom, Steven</au><au>Huang, Richard Y.-C.</au><au>Qiao, Jennifer X.</au><au>Ewing, William R.</au><au>Oblinsky, Daniel G.</au><au>Scholes, Gregory D.</au><au>MacMillan, David W. C.</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>9</issue><spage>902</spage><epage>908</epage><pages>902-908</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Abstact
The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction.
Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-021-00733-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7460-8260</orcidid><orcidid>https://orcid.org/0000-0002-7172-110X</orcidid><orcidid>https://orcid.org/0000-0002-6685-2092</orcidid><orcidid>https://orcid.org/0000-0003-3336-7960</orcidid><orcidid>https://orcid.org/0000-0003-3352-4532</orcidid><orcidid>https://orcid.org/0000000333524532</orcidid><orcidid>https://orcid.org/000000027172110X</orcidid><orcidid>https://orcid.org/0000000266852092</orcidid><orcidid>https://orcid.org/0000000333367960</orcidid><orcidid>https://orcid.org/0000000174608260</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2021-09, Vol.13 (9), p.902-908 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_osti_scitechconnect_1805171 |
source | Nature; Alma/SFX Local Collection |
subjects | 639/638/403/933 639/638/549/933 639/638/77/890 639/638/92/2783 Aldehydes Alkynes Amino acids Analytical Chemistry Biochemistry Catalysis Chemical modification Chemical reactions Chemistry Chemistry and Materials Science Chemistry/Food Science Conjugates Fluorescence Genetic engineering Genetic transformation Inorganic Chemistry INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY Labeling Organic Chemistry Photoredox catalysis Physical Chemistry Proteins Regioselectivity Selectivity Tyrosine |
title | Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-selective%20tyrosine%20bioconjugation%20via%20photoredox%20catalysis%20for%20native-to-bioorthogonal%20protein%20transformation&rft.jtitle=Nature%20chemistry&rft.au=Li,%20Beryl%20X.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2021-09-01&rft.volume=13&rft.issue=9&rft.spage=902&rft.epage=908&rft.pages=902-908&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00733-y&rft_dat=%3Cproquest_osti_%3E2572354074%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572354074&rft_id=info:pmid/&rfr_iscdi=true |