Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation

Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-09, Vol.13 (9), p.902-908
Hauptverfasser: Li, Beryl X., Kim, Daniel K., Bloom, Steven, Huang, Richard Y.-C., Qiao, Jennifer X., Ewing, William R., Oblinsky, Daniel G., Scholes, Gregory D., MacMillan, David W. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 908
container_issue 9
container_start_page 902
container_title Nature chemistry
container_volume 13
creator Li, Beryl X.
Kim, Daniel K.
Bloom, Steven
Huang, Richard Y.-C.
Qiao, Jennifer X.
Ewing, William R.
Oblinsky, Daniel G.
Scholes, Gregory D.
MacMillan, David W. C.
description Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction. Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.
doi_str_mv 10.1038/s41557-021-00733-y
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1805171</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2572354074</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</originalsourceid><addsrcrecordid>eNp9kT1PwzAURSMEEqXwB5gsWFgMdvyVjKjiS0JiAGbLcZzWVWoX263Iv8dtEEgMTH7DuVc-7xXFOUbXGJHqJlLMmICoxBAhQQgcDooJFoxBSmh9-DMTdFycxLhEiDOC-aQIrzYZGE1vdLJbA9IQfLTOgMZ67d1yM1fJege2VoH1wicfTOs_gVZJ9UO0EXQ-AKd2WZg8zCkf0sLPvVM9WAefjHUgBeViBlf7rtPiqFN9NGff77R4v797mz3C55eHp9ntM9S0qhPkhKNK0KalvMGia7Kb4AYLUdU14Uxw3DYlU4jVrNRd2-mmyUsgXUVMVRtRkWlxMfb6mKyMOovqRXZyWVXiCjEscIauRij_9WNjYpIrG7Xpe-WM30RZMspZXTNCMnr5B136TcieO0qUhFEkaKbKkdJ5kTGYTq6DXakwSIzk7lZyvJXMPnJ_KznkEBlDMcNubsJv9T-pLz8dmVk</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572354074</pqid></control><display><type>article</type><title>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</title><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Li, Beryl X. ; Kim, Daniel K. ; Bloom, Steven ; Huang, Richard Y.-C. ; Qiao, Jennifer X. ; Ewing, William R. ; Oblinsky, Daniel G. ; Scholes, Gregory D. ; MacMillan, David W. C.</creator><creatorcontrib>Li, Beryl X. ; Kim, Daniel K. ; Bloom, Steven ; Huang, Richard Y.-C. ; Qiao, Jennifer X. ; Ewing, William R. ; Oblinsky, Daniel G. ; Scholes, Gregory D. ; MacMillan, David W. C. ; Princeton Univ., NJ (United States)</creatorcontrib><description>Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction. Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/s41557-021-00733-y</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/933 ; 639/638/549/933 ; 639/638/77/890 ; 639/638/92/2783 ; Aldehydes ; Alkynes ; Amino acids ; Analytical Chemistry ; Biochemistry ; Catalysis ; Chemical modification ; Chemical reactions ; Chemistry ; Chemistry and Materials Science ; Chemistry/Food Science ; Conjugates ; Fluorescence ; Genetic engineering ; Genetic transformation ; Inorganic Chemistry ; INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY ; Labeling ; Organic Chemistry ; Photoredox catalysis ; Physical Chemistry ; Proteins ; Regioselectivity ; Selectivity ; Tyrosine</subject><ispartof>Nature chemistry, 2021-09, Vol.13 (9), p.902-908</ispartof><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021</rights><rights>The Author(s), under exclusive licence to Springer Nature Limited 2021.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</citedby><cites>FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</cites><orcidid>0000-0001-7460-8260 ; 0000-0002-7172-110X ; 0000-0002-6685-2092 ; 0000-0003-3336-7960 ; 0000-0003-3352-4532 ; 0000000333524532 ; 000000027172110X ; 0000000266852092 ; 0000000333367960 ; 0000000174608260</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27925,27926</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1805171$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Beryl X.</creatorcontrib><creatorcontrib>Kim, Daniel K.</creatorcontrib><creatorcontrib>Bloom, Steven</creatorcontrib><creatorcontrib>Huang, Richard Y.-C.</creatorcontrib><creatorcontrib>Qiao, Jennifer X.</creatorcontrib><creatorcontrib>Ewing, William R.</creatorcontrib><creatorcontrib>Oblinsky, Daniel G.</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>MacMillan, David W. C.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><title>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</title><title>Nature chemistry</title><addtitle>Nat. Chem</addtitle><description>Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction. Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.</description><subject>639/638/403/933</subject><subject>639/638/549/933</subject><subject>639/638/77/890</subject><subject>639/638/92/2783</subject><subject>Aldehydes</subject><subject>Alkynes</subject><subject>Amino acids</subject><subject>Analytical Chemistry</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Chemical modification</subject><subject>Chemical reactions</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Chemistry/Food Science</subject><subject>Conjugates</subject><subject>Fluorescence</subject><subject>Genetic engineering</subject><subject>Genetic transformation</subject><subject>Inorganic Chemistry</subject><subject>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</subject><subject>Labeling</subject><subject>Organic Chemistry</subject><subject>Photoredox catalysis</subject><subject>Physical Chemistry</subject><subject>Proteins</subject><subject>Regioselectivity</subject><subject>Selectivity</subject><subject>Tyrosine</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kT1PwzAURSMEEqXwB5gsWFgMdvyVjKjiS0JiAGbLcZzWVWoX263Iv8dtEEgMTH7DuVc-7xXFOUbXGJHqJlLMmICoxBAhQQgcDooJFoxBSmh9-DMTdFycxLhEiDOC-aQIrzYZGE1vdLJbA9IQfLTOgMZ67d1yM1fJege2VoH1wicfTOs_gVZJ9UO0EXQ-AKd2WZg8zCkf0sLPvVM9WAefjHUgBeViBlf7rtPiqFN9NGff77R4v797mz3C55eHp9ntM9S0qhPkhKNK0KalvMGia7Kb4AYLUdU14Uxw3DYlU4jVrNRd2-mmyUsgXUVMVRtRkWlxMfb6mKyMOovqRXZyWVXiCjEscIauRij_9WNjYpIrG7Xpe-WM30RZMspZXTNCMnr5B136TcieO0qUhFEkaKbKkdJ5kTGYTq6DXakwSIzk7lZyvJXMPnJ_KznkEBlDMcNubsJv9T-pLz8dmVk</recordid><startdate>20210901</startdate><enddate>20210901</enddate><creator>Li, Beryl X.</creator><creator>Kim, Daniel K.</creator><creator>Bloom, Steven</creator><creator>Huang, Richard Y.-C.</creator><creator>Qiao, Jennifer X.</creator><creator>Ewing, William R.</creator><creator>Oblinsky, Daniel G.</creator><creator>Scholes, Gregory D.</creator><creator>MacMillan, David W. C.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>OIOZB</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0001-7460-8260</orcidid><orcidid>https://orcid.org/0000-0002-7172-110X</orcidid><orcidid>https://orcid.org/0000-0002-6685-2092</orcidid><orcidid>https://orcid.org/0000-0003-3336-7960</orcidid><orcidid>https://orcid.org/0000-0003-3352-4532</orcidid><orcidid>https://orcid.org/0000000333524532</orcidid><orcidid>https://orcid.org/000000027172110X</orcidid><orcidid>https://orcid.org/0000000266852092</orcidid><orcidid>https://orcid.org/0000000333367960</orcidid><orcidid>https://orcid.org/0000000174608260</orcidid></search><sort><creationdate>20210901</creationdate><title>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</title><author>Li, Beryl X. ; Kim, Daniel K. ; Bloom, Steven ; Huang, Richard Y.-C. ; Qiao, Jennifer X. ; Ewing, William R. ; Oblinsky, Daniel G. ; Scholes, Gregory D. ; MacMillan, David W. C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-6360874bd46b17fb02176e177899365761db25a05952cfdfcbb4153f83e89e783</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>639/638/403/933</topic><topic>639/638/549/933</topic><topic>639/638/77/890</topic><topic>639/638/92/2783</topic><topic>Aldehydes</topic><topic>Alkynes</topic><topic>Amino acids</topic><topic>Analytical Chemistry</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Chemical modification</topic><topic>Chemical reactions</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Chemistry/Food Science</topic><topic>Conjugates</topic><topic>Fluorescence</topic><topic>Genetic engineering</topic><topic>Genetic transformation</topic><topic>Inorganic Chemistry</topic><topic>INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY</topic><topic>Labeling</topic><topic>Organic Chemistry</topic><topic>Photoredox catalysis</topic><topic>Physical Chemistry</topic><topic>Proteins</topic><topic>Regioselectivity</topic><topic>Selectivity</topic><topic>Tyrosine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Beryl X.</creatorcontrib><creatorcontrib>Kim, Daniel K.</creatorcontrib><creatorcontrib>Bloom, Steven</creatorcontrib><creatorcontrib>Huang, Richard Y.-C.</creatorcontrib><creatorcontrib>Qiao, Jennifer X.</creatorcontrib><creatorcontrib>Ewing, William R.</creatorcontrib><creatorcontrib>Oblinsky, Daniel G.</creatorcontrib><creatorcontrib>Scholes, Gregory D.</creatorcontrib><creatorcontrib>MacMillan, David W. C.</creatorcontrib><creatorcontrib>Princeton Univ., NJ (United States)</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Beryl X.</au><au>Kim, Daniel K.</au><au>Bloom, Steven</au><au>Huang, Richard Y.-C.</au><au>Qiao, Jennifer X.</au><au>Ewing, William R.</au><au>Oblinsky, Daniel G.</au><au>Scholes, Gregory D.</au><au>MacMillan, David W. C.</au><aucorp>Princeton Univ., NJ (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation</atitle><jtitle>Nature chemistry</jtitle><stitle>Nat. Chem</stitle><date>2021-09-01</date><risdate>2021</risdate><volume>13</volume><issue>9</issue><spage>902</spage><epage>908</epage><pages>902-908</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction. Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41557-021-00733-y</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-7460-8260</orcidid><orcidid>https://orcid.org/0000-0002-7172-110X</orcidid><orcidid>https://orcid.org/0000-0002-6685-2092</orcidid><orcidid>https://orcid.org/0000-0003-3336-7960</orcidid><orcidid>https://orcid.org/0000-0003-3352-4532</orcidid><orcidid>https://orcid.org/0000000333524532</orcidid><orcidid>https://orcid.org/000000027172110X</orcidid><orcidid>https://orcid.org/0000000266852092</orcidid><orcidid>https://orcid.org/0000000333367960</orcidid><orcidid>https://orcid.org/0000000174608260</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1755-4330
ispartof Nature chemistry, 2021-09, Vol.13 (9), p.902-908
issn 1755-4330
1755-4349
language eng
recordid cdi_osti_scitechconnect_1805171
source Nature; Alma/SFX Local Collection
subjects 639/638/403/933
639/638/549/933
639/638/77/890
639/638/92/2783
Aldehydes
Alkynes
Amino acids
Analytical Chemistry
Biochemistry
Catalysis
Chemical modification
Chemical reactions
Chemistry
Chemistry and Materials Science
Chemistry/Food Science
Conjugates
Fluorescence
Genetic engineering
Genetic transformation
Inorganic Chemistry
INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY
Labeling
Organic Chemistry
Photoredox catalysis
Physical Chemistry
Proteins
Regioselectivity
Selectivity
Tyrosine
title Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T14%3A56%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Site-selective%20tyrosine%20bioconjugation%20via%20photoredox%20catalysis%20for%20native-to-bioorthogonal%20protein%20transformation&rft.jtitle=Nature%20chemistry&rft.au=Li,%20Beryl%20X.&rft.aucorp=Princeton%20Univ.,%20NJ%20(United%20States)&rft.date=2021-09-01&rft.volume=13&rft.issue=9&rft.spage=902&rft.epage=908&rft.pages=902-908&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/s41557-021-00733-y&rft_dat=%3Cproquest_osti_%3E2572354074%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2572354074&rft_id=info:pmid/&rfr_iscdi=true