Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation
Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, r...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2021-09, Vol.13 (9), p.902-908 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Abstact
The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction.
Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products. |
---|---|
ISSN: | 1755-4330 1755-4349 |
DOI: | 10.1038/s41557-021-00733-y |