Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation

Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, r...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature chemistry 2021-09, Vol.13 (9), p.902-908
Hauptverfasser: Li, Beryl X., Kim, Daniel K., Bloom, Steven, Huang, Richard Y.-C., Qiao, Jennifer X., Ewing, William R., Oblinsky, Daniel G., Scholes, Gregory D., MacMillan, David W. C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstact The growing prevalence of synthetically modified proteins in pharmaceuticals and materials has exposed the need for efficient strategies to enable chemical modifications with high site-selectivity. While genetic engineering can incorporate non-natural amino acids into recombinant proteins, regioselective chemical modification of wild-type proteins remains a challenge. Herein, we use photoredox catalysis to develop a site-selective tyrosine bioconjugation pathway that incorporates bioorthogonal formyl groups, which subsequently allows for the synthesis of structurally defined fluorescent conjugates from native proteins. A water-soluble photocatalyst, lumiflavin, has been shown to induce oxidative coupling between a previously unreported phenoxazine dialdehyde tag and a single tyrosine site, even in the presence of multiple tyrosyl side chains, through the formation of a covalent C–N bond. A variety of native proteins, including those with multiple tyrosines, can successfully undergo both tyrosine-specific and single-site-selective labelling. This technology directly introduces aldehyde moieties onto native proteins, enabling rapid product diversification using an array of well-established bioorthogonal functionalization protocols including the alkyne–azide click reaction. Regioselective chemical modification of wild-type proteins remains challenging. Now, by harnessing the varied SOMOphilicity of native tyrosine residues through photoredox catalysis, a site-selective bioconjugation method has been developed. This technology directly incorporates bioorthogonal formyl groups in one step, forming structurally defined fluorescent conjugates that can be rapidly diversified to biorelevant products.
ISSN:1755-4330
1755-4349
DOI:10.1038/s41557-021-00733-y