Entanglement wedge reconstruction using the Petz map

A bstract At the heart of recent progress in AdS/CFT is the question of subregion duality, or entanglement wedge reconstruction: which part(s) of the boundary CFT are dual to a given subregion of the bulk? This question can be answered by appealing to the quantum error correcting properties of holog...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The journal of high energy physics 2020-01, Vol.2020 (1), p.1-14, Article 168
Hauptverfasser: Chen, Chi-Fang, Penington, Geoffrey, Salton, Grant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A bstract At the heart of recent progress in AdS/CFT is the question of subregion duality, or entanglement wedge reconstruction: which part(s) of the boundary CFT are dual to a given subregion of the bulk? This question can be answered by appealing to the quantum error correcting properties of holography, and it was recently shown that robust bulk (entanglement wedge) reconstruction can be achieved using a universal recovery channel known as the twirled Petz map . In short, one can use the twirled Petz map to recover bulk data from a subset of the boundary. However, this map involves an averaging procedure over bulk and boundary modular time, and hence it can be somewhat intractable to evaluate in practice. We show that a much simpler channel, the Petz map, is sufficient for entanglement wedge reconstruction for any code space of fixed finite dimension — no twirling is required. Moreover, the error in the reconstruction will always be non-perturbatively small. From a quantum information perspective, we prove a general theorem extending the use of the Petz map as a general-purpose recovery channel to subsystem and operator algebra quantum error correction.
ISSN:1029-8479
1029-8479
DOI:10.1007/JHEP01(2020)168