Nanoscale depth and lithiation dependence of V2O5 band structure by cathodoluminescence spectroscopy
Vanadium pentoxide (V2O5) is a very well-known cathode material that has attracted considerable interest for its potential use in solid-state lithium-ion batteries. We pioneer the use of depth-resolved cathodoluminescence spectroscopy (DRCLS) to monitor the changes in the electronic structure of lit...
Gespeichert in:
Veröffentlicht in: | Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2020-01, Vol.8 (23), p.11800-11810 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Vanadium pentoxide (V2O5) is a very well-known cathode material that has attracted considerable interest for its potential use in solid-state lithium-ion batteries. We pioneer the use of depth-resolved cathodoluminescence spectroscopy (DRCLS) to monitor the changes in the electronic structure of lithiated V2O5 from the free surface to the thin film bulk several hundred nm below as a function of lithiation. DRCLS measurements of V2O5 interband transitions are in excellent agreement with density functional theory (DFT) calculations. The direct measure of V2O5's electronic band structure as a function of lithiation level provided by DRCLS can help inform solid-state battery designs to further withstand degradation and increase efficiency. In particular, these unique electrode measurements may reveal physical mechanisms of lithiation that change V2O5 irreversibly, as well as methods to mitigate them in solid-state batteries. |
---|---|
ISSN: | 2050-7488 2050-7496 |
DOI: | 10.1039/d0ta03204b |