Perspective on machine learning for advancing fluid mechanics
In this paper, a perspective is presented on how machine learning (ML), with its burgeoning popularity and the increasing availability of portable implementations, might advance fluid mechanics. As with any numerical or experimental method, ML methods have strengths and limitations, which are acknow...
Gespeichert in:
Veröffentlicht in: | Physical review fluids 2019-10, Vol.4 (10), Article 100501 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | |
container_title | Physical review fluids |
container_volume | 4 |
creator | Brenner, M. P. Eldredge, J. D. Freund, J. B. |
description | In this paper, a perspective is presented on how machine learning (ML), with its burgeoning popularity and the increasing availability of portable implementations, might advance fluid mechanics. As with any numerical or experimental method, ML methods have strengths and limitations, which are acknowledged. Their potential impact is high so long as outcomes are held to the long-standing critical standards that should guide studies of flow physics. |
doi_str_mv | 10.1103/PhysRevFluids.4.100501 |
format | Article |
fullrecord | <record><control><sourceid>crossref_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1801081</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>10_1103_PhysRevFluids_4_100501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c449t-310e73495e4ea17b7a8bda01bf0d0cc36e83b97c947fb0d2adf9b0803017dbc43</originalsourceid><addsrcrecordid>eNpVkE9LAzEQxYMoWGq_gizet8406WZz8CDFWqFgEQVvIX9mbaTNlmRd6Le3tR70NG_g8d7jx9g1whgR-O1qvc8v1M83X8HnsRgjwBTwjA0molKlUvB-_kdfslHOnwCAFZdS1QN2t6KUd-S60FPRxmJr3DpEKjZkUgzxo2jaVBjfm-h-vmNPsSW3NjG4fMUuGrPJNPq9Q_Y2f3idLcrl8-PT7H5ZOiFUV3IEklyoKQkyKK00tfUG0DbgwTleUc2tkk4J2VjwE-MbZaEGDii9dYIP2c0pt81d0NmF7rDAtTEehmusAaHGg6k6mVxqc07U6F0KW5P2GkEfYel_sLTQJ1j8G07nYa0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Perspective on machine learning for advancing fluid mechanics</title><source>American Physical Society Journals</source><creator>Brenner, M. P. ; Eldredge, J. D. ; Freund, J. B.</creator><creatorcontrib>Brenner, M. P. ; Eldredge, J. D. ; Freund, J. B. ; Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><description>In this paper, a perspective is presented on how machine learning (ML), with its burgeoning popularity and the increasing availability of portable implementations, might advance fluid mechanics. As with any numerical or experimental method, ML methods have strengths and limitations, which are acknowledged. Their potential impact is high so long as outcomes are held to the long-standing critical standards that should guide studies of flow physics.</description><identifier>ISSN: 2469-990X</identifier><identifier>EISSN: 2469-990X</identifier><identifier>DOI: 10.1103/PhysRevFluids.4.100501</identifier><language>eng</language><publisher>United States: American Physical Society (APS)</publisher><subject>ENGINEERING ; Physics</subject><ispartof>Physical review fluids, 2019-10, Vol.4 (10), Article 100501</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c449t-310e73495e4ea17b7a8bda01bf0d0cc36e83b97c947fb0d2adf9b0803017dbc43</citedby><cites>FETCH-LOGICAL-c449t-310e73495e4ea17b7a8bda01bf0d0cc36e83b97c947fb0d2adf9b0803017dbc43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,2877,2878,27929,27930</link.rule.ids><backlink>$$Uhttps://www.osti.gov/servlets/purl/1801081$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Brenner, M. P.</creatorcontrib><creatorcontrib>Eldredge, J. D.</creatorcontrib><creatorcontrib>Freund, J. B.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><title>Perspective on machine learning for advancing fluid mechanics</title><title>Physical review fluids</title><description>In this paper, a perspective is presented on how machine learning (ML), with its burgeoning popularity and the increasing availability of portable implementations, might advance fluid mechanics. As with any numerical or experimental method, ML methods have strengths and limitations, which are acknowledged. Their potential impact is high so long as outcomes are held to the long-standing critical standards that should guide studies of flow physics.</description><subject>ENGINEERING</subject><subject>Physics</subject><issn>2469-990X</issn><issn>2469-990X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><recordid>eNpVkE9LAzEQxYMoWGq_gizet8406WZz8CDFWqFgEQVvIX9mbaTNlmRd6Le3tR70NG_g8d7jx9g1whgR-O1qvc8v1M83X8HnsRgjwBTwjA0molKlUvB-_kdfslHOnwCAFZdS1QN2t6KUd-S60FPRxmJr3DpEKjZkUgzxo2jaVBjfm-h-vmNPsSW3NjG4fMUuGrPJNPq9Q_Y2f3idLcrl8-PT7H5ZOiFUV3IEklyoKQkyKK00tfUG0DbgwTleUc2tkk4J2VjwE-MbZaEGDii9dYIP2c0pt81d0NmF7rDAtTEehmusAaHGg6k6mVxqc07U6F0KW5P2GkEfYel_sLTQJ1j8G07nYa0</recordid><startdate>20191016</startdate><enddate>20191016</enddate><creator>Brenner, M. P.</creator><creator>Eldredge, J. D.</creator><creator>Freund, J. B.</creator><general>American Physical Society (APS)</general><scope>AAYXX</scope><scope>CITATION</scope><scope>OIOZB</scope><scope>OTOTI</scope></search><sort><creationdate>20191016</creationdate><title>Perspective on machine learning for advancing fluid mechanics</title><author>Brenner, M. P. ; Eldredge, J. D. ; Freund, J. B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c449t-310e73495e4ea17b7a8bda01bf0d0cc36e83b97c947fb0d2adf9b0803017dbc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>ENGINEERING</topic><topic>Physics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brenner, M. P.</creatorcontrib><creatorcontrib>Eldredge, J. D.</creatorcontrib><creatorcontrib>Freund, J. B.</creatorcontrib><creatorcontrib>Univ. of Illinois at Urbana-Champaign, IL (United States)</creatorcontrib><collection>CrossRef</collection><collection>OSTI.GOV - Hybrid</collection><collection>OSTI.GOV</collection><jtitle>Physical review fluids</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brenner, M. P.</au><au>Eldredge, J. D.</au><au>Freund, J. B.</au><aucorp>Univ. of Illinois at Urbana-Champaign, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perspective on machine learning for advancing fluid mechanics</atitle><jtitle>Physical review fluids</jtitle><date>2019-10-16</date><risdate>2019</risdate><volume>4</volume><issue>10</issue><artnum>100501</artnum><issn>2469-990X</issn><eissn>2469-990X</eissn><abstract>In this paper, a perspective is presented on how machine learning (ML), with its burgeoning popularity and the increasing availability of portable implementations, might advance fluid mechanics. As with any numerical or experimental method, ML methods have strengths and limitations, which are acknowledged. Their potential impact is high so long as outcomes are held to the long-standing critical standards that should guide studies of flow physics.</abstract><cop>United States</cop><pub>American Physical Society (APS)</pub><doi>10.1103/PhysRevFluids.4.100501</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2469-990X |
ispartof | Physical review fluids, 2019-10, Vol.4 (10), Article 100501 |
issn | 2469-990X 2469-990X |
language | eng |
recordid | cdi_osti_scitechconnect_1801081 |
source | American Physical Society Journals |
subjects | ENGINEERING Physics |
title | Perspective on machine learning for advancing fluid mechanics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-14T09%3A58%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perspective%20on%20machine%20learning%20for%20advancing%20fluid%20mechanics&rft.jtitle=Physical%20review%20fluids&rft.au=Brenner,%20M.%20P.&rft.aucorp=Univ.%20of%20Illinois%20at%20Urbana-Champaign,%20IL%20(United%20States)&rft.date=2019-10-16&rft.volume=4&rft.issue=10&rft.artnum=100501&rft.issn=2469-990X&rft.eissn=2469-990X&rft_id=info:doi/10.1103/PhysRevFluids.4.100501&rft_dat=%3Ccrossref_osti_%3E10_1103_PhysRevFluids_4_100501%3C/crossref_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true |