Perspective on machine learning for advancing fluid mechanics

In this paper, a perspective is presented on how machine learning (ML), with its burgeoning popularity and the increasing availability of portable implementations, might advance fluid mechanics. As with any numerical or experimental method, ML methods have strengths and limitations, which are acknow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review fluids 2019-10, Vol.4 (10), Article 100501
Hauptverfasser: Brenner, M. P., Eldredge, J. D., Freund, J. B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, a perspective is presented on how machine learning (ML), with its burgeoning popularity and the increasing availability of portable implementations, might advance fluid mechanics. As with any numerical or experimental method, ML methods have strengths and limitations, which are acknowledged. Their potential impact is high so long as outcomes are held to the long-standing critical standards that should guide studies of flow physics.
ISSN:2469-990X
2469-990X
DOI:10.1103/PhysRevFluids.4.100501