Orbital selectivity of layer-resolved tunneling in the iron-based superconductor Ba0.6K0.4Fe2As2

We use scanning tunneling microscopy/spectroscopy to elucidate the Cooper pairing of the iron pnictide superconductor Ba0.6K0.4Fe2As2. By a cold-cleaving technique, we obtain atomically resolved termination surfaces with different layer identities. Remarkably, we observe that the low-energy tunnelin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-08, Vol.102 (5), p.1
Hauptverfasser: Yin, J-X, Wu, X-X, Li, Jian, Wu, Zheng, Wang, J-H, Ting, C-S, Hor, P-H, Liang, X J, Zhang, C L, Dai, P C, Wang, X C, Jin, C Q, Chen, G F, Hu, J P, Wang, Z-Q, Li, Ang, Ding, H, Pan, S H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We use scanning tunneling microscopy/spectroscopy to elucidate the Cooper pairing of the iron pnictide superconductor Ba0.6K0.4Fe2As2. By a cold-cleaving technique, we obtain atomically resolved termination surfaces with different layer identities. Remarkably, we observe that the low-energy tunneling spectrum related to superconductivity has an unprecedented dependence on the layer identity. By cross referencing with the angle-revolved photoemission results and the tunneling data of LiFeAs, we find that tunneling on each termination surface probes superconductivity through selecting distinct Fe − 3 d orbitals. These findings imply the real-space orbital features of the Cooper pairing in the iron pnictide superconductors, and propose a general concept that, for complex multiorbital material, tunneling on different terminating layers can feature orbital selectivity.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.054515