Orbital selectivity of layer-resolved tunneling in the iron-based superconductor Ba0.6K0.4Fe2As2
We use scanning tunneling microscopy/spectroscopy to elucidate the Cooper pairing of the iron pnictide superconductor Ba0.6K0.4Fe2As2. By a cold-cleaving technique, we obtain atomically resolved termination surfaces with different layer identities. Remarkably, we observe that the low-energy tunnelin...
Gespeichert in:
Veröffentlicht in: | Physical review. B 2020-08, Vol.102 (5), p.1 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We use scanning tunneling microscopy/spectroscopy to elucidate the Cooper pairing of the iron pnictide superconductor Ba0.6K0.4Fe2As2. By a cold-cleaving technique, we obtain atomically resolved termination surfaces with different layer identities. Remarkably, we observe that the low-energy tunneling spectrum related to superconductivity has an unprecedented dependence on the layer identity. By cross referencing with the angle-revolved photoemission results and the tunneling data of LiFeAs, we find that tunneling on each termination surface probes superconductivity through selecting distinct Fe − 3 d orbitals. These findings imply the real-space orbital features of the Cooper pairing in the iron pnictide superconductors, and propose a general concept that, for complex multiorbital material, tunneling on different terminating layers can feature orbital selectivity. |
---|---|
ISSN: | 2469-9950 2469-9969 |
DOI: | 10.1103/PhysRevB.102.054515 |