Insights into negative differential resistance in MoS2 Esaki diodes: A first-principles perspective

MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. B 2020-09, Vol.102 (11), p.1
Hauptverfasser: Bruce, Adam V, Liu, Shuanglong, Fry, James N, Cheng, Hai-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:MoS2 is a two-dimensional material with a band gap depending on the number of layers and tunable by an external electric field. The experimentally observed intralayer band-to-band tunneling and interlayer band-to-band tunneling in this material present an opportunity for new electronic applications in tunnel field-effect transistors. However, such a widely accepted concept has yet to be been supported by theoretical investigations based on first principles. In this paper, using density functional theory, in conjunction with nonequilibrium Green's function techniques and our electric field gating method, enabled by a large-scale computational approach, we study the relation between band alignment and transmission in planar and side-stack MoS2 p–i–n junction configurations. We demonstrate the presence of negative differential resistance for both in-plane and interlayer current, a staple characteristic of tunnel diode junctions, and analyze the physical origin of such an effect. Electrostatic potentials, the van der Waals barrier, and a complex band analysis are also examined for a thorough understanding of Esaki diodes.
ISSN:2469-9950
2469-9969
DOI:10.1103/PhysRevB.102.115415