Balancing volumetric and gravimetric uptake in highly porous materials for clean energy
A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulat...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-04, Vol.368 (6488), p.297-303 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 303 |
---|---|
container_issue | 6488 |
container_start_page | 297 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 368 |
creator | Chen, Zhijie Li, Penghao Anderson, Ryther Wang, Xingjie Zhang, Xuan Robison, Lee Redfern, Louis R Moribe, Shinya Islamoglu, Timur Gómez-Gualdrón, Diego A Yildirim, Taner Stoddart, J Fraser Farha, Omar K |
description | A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m
g
and a volumetric BET area of 2060 m
cm
while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g
) with an uptake of 0.66 g g
[262 cm
(standard temperature and pressure, STP) cm
] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g
[238 cm
(STP) cm
] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter
) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar). |
doi_str_mv | 10.1126/science.aaz8881 |
format | Article |
fullrecord | <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1799552</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2391972520</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-6fe83e40ca278210fa1acd2d0601d9ba695182da5d02a047272b2f642a67fd973</originalsourceid><addsrcrecordid>eNpdkc1vFDEMxSMEosu2Z24ogguXaZ3MV3KECgpSpV6KOEbejGc3ZSZZkplK27--We3QAyfL9s-W3nuMvRdwKYRsrpJ15C1dIj4ppcQrthKg60JLKF-zFUDZFAra-oy9S-kBIO90-ZadlVJqrWtYsd9fcUBvnd_yxzDMI03RWY6-49uIj27p5_2Ef4g7z3duuxsOfB9imBMfcaLocEi8D5HbgdBz8hS3h3P2ps9zuljqmv36_u3--kdxe3fz8_rLbWEroaai6UmVVIFF2SopoEeBtpMdNCA6vcFG10LJDusOJELVylZuZN9UEpu273RbrtnH09-QJmeyHRPZnQ3ek52MaLPIWmbo8wnax_B3pjSZ0SVLQ1ZOWYaRpRa6lXV2bc0-_Yc-hDn6LOFIgaqkao7U1YmyMaQUqTf76EaMByPAHIMxSzBmCSZffFj-zpuRuhf-XxLlMz92izE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2390842860</pqid></control><display><type>article</type><title>Balancing volumetric and gravimetric uptake in highly porous materials for clean energy</title><source>American Association for the Advancement of Science</source><creator>Chen, Zhijie ; Li, Penghao ; Anderson, Ryther ; Wang, Xingjie ; Zhang, Xuan ; Robison, Lee ; Redfern, Louis R ; Moribe, Shinya ; Islamoglu, Timur ; Gómez-Gualdrón, Diego A ; Yildirim, Taner ; Stoddart, J Fraser ; Farha, Omar K</creator><creatorcontrib>Chen, Zhijie ; Li, Penghao ; Anderson, Ryther ; Wang, Xingjie ; Zhang, Xuan ; Robison, Lee ; Redfern, Louis R ; Moribe, Shinya ; Islamoglu, Timur ; Gómez-Gualdrón, Diego A ; Yildirim, Taner ; Stoddart, J Fraser ; Farha, Omar K ; Oak Ridge Associated Univ., Oak Ridge, TN (United States) ; Northwestern Univ., Evanston, IL (United States)</creatorcontrib><description>A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m
g
and a volumetric BET area of 2060 m
cm
while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g
) with an uptake of 0.66 g g
[262 cm
(standard temperature and pressure, STP) cm
] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g
[238 cm
(STP) cm
] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter
) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.aaz8881</identifier><identifier>PMID: 32299950</identifier><language>eng</language><publisher>United States: The American Association for the Advancement of Science</publisher><subject>Alternative fuels ; Aluminum ; Clean energy ; Computer simulation ; Containers ; Energy ; Energy storage ; Federal agencies ; Fossil fuels ; Gravimetry ; Hydrogen ; Hydrogen storage ; Iron ; Metal-organic frameworks ; Methane ; Nuclear fuels ; Porosity ; Porous materials ; Pressure ; Science & Technology - Other Topics ; Scientific Concepts ; Storage ; Temperature ; Work capacity</subject><ispartof>Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6488), p.297-303</ispartof><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.</rights><rights>Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-6fe83e40ca278210fa1acd2d0601d9ba695182da5d02a047272b2f642a67fd973</citedby><cites>FETCH-LOGICAL-c418t-6fe83e40ca278210fa1acd2d0601d9ba695182da5d02a047272b2f642a67fd973</cites><orcidid>0000-0003-3688-9158 ; 0000-0002-0209-064X ; 0000-0001-8985-0471 ; 0000-0002-9904-9845 ; 0000-0002-7419-4499 ; 0000-0003-3237-0199 ; 0000-0002-1517-5845 ; 0000-0002-5802-9944 ; 0000-0003-3161-3697 ; 0000-0001-9232-7382 ; 0000-0001-8214-7265 ; 0000-0001-7101-9989 ; 0000000332370199 ; 0000000274194499 ; 0000000189850471 ; 0000000192327382 ; 0000000331613697 ; 0000000171019989 ; 0000000258029944 ; 000000020209064X ; 0000000215175845 ; 0000000299049845 ; 0000000182147265 ; 0000000336889158</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2882,2883,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/32299950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1799552$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Li, Penghao</creatorcontrib><creatorcontrib>Anderson, Ryther</creatorcontrib><creatorcontrib>Wang, Xingjie</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Robison, Lee</creatorcontrib><creatorcontrib>Redfern, Louis R</creatorcontrib><creatorcontrib>Moribe, Shinya</creatorcontrib><creatorcontrib>Islamoglu, Timur</creatorcontrib><creatorcontrib>Gómez-Gualdrón, Diego A</creatorcontrib><creatorcontrib>Yildirim, Taner</creatorcontrib><creatorcontrib>Stoddart, J Fraser</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><title>Balancing volumetric and gravimetric uptake in highly porous materials for clean energy</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m
g
and a volumetric BET area of 2060 m
cm
while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g
) with an uptake of 0.66 g g
[262 cm
(standard temperature and pressure, STP) cm
] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g
[238 cm
(STP) cm
] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter
) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).</description><subject>Alternative fuels</subject><subject>Aluminum</subject><subject>Clean energy</subject><subject>Computer simulation</subject><subject>Containers</subject><subject>Energy</subject><subject>Energy storage</subject><subject>Federal agencies</subject><subject>Fossil fuels</subject><subject>Gravimetry</subject><subject>Hydrogen</subject><subject>Hydrogen storage</subject><subject>Iron</subject><subject>Metal-organic frameworks</subject><subject>Methane</subject><subject>Nuclear fuels</subject><subject>Porosity</subject><subject>Porous materials</subject><subject>Pressure</subject><subject>Science & Technology - Other Topics</subject><subject>Scientific Concepts</subject><subject>Storage</subject><subject>Temperature</subject><subject>Work capacity</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2020</creationdate><recordtype>article</recordtype><recordid>eNpdkc1vFDEMxSMEosu2Z24ogguXaZ3MV3KECgpSpV6KOEbejGc3ZSZZkplK27--We3QAyfL9s-W3nuMvRdwKYRsrpJ15C1dIj4ppcQrthKg60JLKF-zFUDZFAra-oy9S-kBIO90-ZadlVJqrWtYsd9fcUBvnd_yxzDMI03RWY6-49uIj27p5_2Ef4g7z3duuxsOfB9imBMfcaLocEi8D5HbgdBz8hS3h3P2ps9zuljqmv36_u3--kdxe3fz8_rLbWEroaai6UmVVIFF2SopoEeBtpMdNCA6vcFG10LJDusOJELVylZuZN9UEpu273RbrtnH09-QJmeyHRPZnQ3ek52MaLPIWmbo8wnax_B3pjSZ0SVLQ1ZOWYaRpRa6lXV2bc0-_Yc-hDn6LOFIgaqkao7U1YmyMaQUqTf76EaMByPAHIMxSzBmCSZffFj-zpuRuhf-XxLlMz92izE</recordid><startdate>20200417</startdate><enddate>20200417</enddate><creator>Chen, Zhijie</creator><creator>Li, Penghao</creator><creator>Anderson, Ryther</creator><creator>Wang, Xingjie</creator><creator>Zhang, Xuan</creator><creator>Robison, Lee</creator><creator>Redfern, Louis R</creator><creator>Moribe, Shinya</creator><creator>Islamoglu, Timur</creator><creator>Gómez-Gualdrón, Diego A</creator><creator>Yildirim, Taner</creator><creator>Stoddart, J Fraser</creator><creator>Farha, Omar K</creator><general>The American Association for the Advancement of Science</general><general>AAAS</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-3688-9158</orcidid><orcidid>https://orcid.org/0000-0002-0209-064X</orcidid><orcidid>https://orcid.org/0000-0001-8985-0471</orcidid><orcidid>https://orcid.org/0000-0002-9904-9845</orcidid><orcidid>https://orcid.org/0000-0002-7419-4499</orcidid><orcidid>https://orcid.org/0000-0003-3237-0199</orcidid><orcidid>https://orcid.org/0000-0002-1517-5845</orcidid><orcidid>https://orcid.org/0000-0002-5802-9944</orcidid><orcidid>https://orcid.org/0000-0003-3161-3697</orcidid><orcidid>https://orcid.org/0000-0001-9232-7382</orcidid><orcidid>https://orcid.org/0000-0001-8214-7265</orcidid><orcidid>https://orcid.org/0000-0001-7101-9989</orcidid><orcidid>https://orcid.org/0000000332370199</orcidid><orcidid>https://orcid.org/0000000274194499</orcidid><orcidid>https://orcid.org/0000000189850471</orcidid><orcidid>https://orcid.org/0000000192327382</orcidid><orcidid>https://orcid.org/0000000331613697</orcidid><orcidid>https://orcid.org/0000000171019989</orcidid><orcidid>https://orcid.org/0000000258029944</orcidid><orcidid>https://orcid.org/000000020209064X</orcidid><orcidid>https://orcid.org/0000000215175845</orcidid><orcidid>https://orcid.org/0000000299049845</orcidid><orcidid>https://orcid.org/0000000182147265</orcidid><orcidid>https://orcid.org/0000000336889158</orcidid></search><sort><creationdate>20200417</creationdate><title>Balancing volumetric and gravimetric uptake in highly porous materials for clean energy</title><author>Chen, Zhijie ; Li, Penghao ; Anderson, Ryther ; Wang, Xingjie ; Zhang, Xuan ; Robison, Lee ; Redfern, Louis R ; Moribe, Shinya ; Islamoglu, Timur ; Gómez-Gualdrón, Diego A ; Yildirim, Taner ; Stoddart, J Fraser ; Farha, Omar K</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-6fe83e40ca278210fa1acd2d0601d9ba695182da5d02a047272b2f642a67fd973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Alternative fuels</topic><topic>Aluminum</topic><topic>Clean energy</topic><topic>Computer simulation</topic><topic>Containers</topic><topic>Energy</topic><topic>Energy storage</topic><topic>Federal agencies</topic><topic>Fossil fuels</topic><topic>Gravimetry</topic><topic>Hydrogen</topic><topic>Hydrogen storage</topic><topic>Iron</topic><topic>Metal-organic frameworks</topic><topic>Methane</topic><topic>Nuclear fuels</topic><topic>Porosity</topic><topic>Porous materials</topic><topic>Pressure</topic><topic>Science & Technology - Other Topics</topic><topic>Scientific Concepts</topic><topic>Storage</topic><topic>Temperature</topic><topic>Work capacity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Zhijie</creatorcontrib><creatorcontrib>Li, Penghao</creatorcontrib><creatorcontrib>Anderson, Ryther</creatorcontrib><creatorcontrib>Wang, Xingjie</creatorcontrib><creatorcontrib>Zhang, Xuan</creatorcontrib><creatorcontrib>Robison, Lee</creatorcontrib><creatorcontrib>Redfern, Louis R</creatorcontrib><creatorcontrib>Moribe, Shinya</creatorcontrib><creatorcontrib>Islamoglu, Timur</creatorcontrib><creatorcontrib>Gómez-Gualdrón, Diego A</creatorcontrib><creatorcontrib>Yildirim, Taner</creatorcontrib><creatorcontrib>Stoddart, J Fraser</creatorcontrib><creatorcontrib>Farha, Omar K</creatorcontrib><creatorcontrib>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</creatorcontrib><creatorcontrib>Northwestern Univ., Evanston, IL (United States)</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Zhijie</au><au>Li, Penghao</au><au>Anderson, Ryther</au><au>Wang, Xingjie</au><au>Zhang, Xuan</au><au>Robison, Lee</au><au>Redfern, Louis R</au><au>Moribe, Shinya</au><au>Islamoglu, Timur</au><au>Gómez-Gualdrón, Diego A</au><au>Yildirim, Taner</au><au>Stoddart, J Fraser</au><au>Farha, Omar K</au><aucorp>Oak Ridge Associated Univ., Oak Ridge, TN (United States)</aucorp><aucorp>Northwestern Univ., Evanston, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Balancing volumetric and gravimetric uptake in highly porous materials for clean energy</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2020-04-17</date><risdate>2020</risdate><volume>368</volume><issue>6488</issue><spage>297</spage><epage>303</epage><pages>297-303</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><abstract>A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m
g
and a volumetric BET area of 2060 m
cm
while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g
) with an uptake of 0.66 g g
[262 cm
(standard temperature and pressure, STP) cm
] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g
[238 cm
(STP) cm
] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter
) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).</abstract><cop>United States</cop><pub>The American Association for the Advancement of Science</pub><pmid>32299950</pmid><doi>10.1126/science.aaz8881</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0003-3688-9158</orcidid><orcidid>https://orcid.org/0000-0002-0209-064X</orcidid><orcidid>https://orcid.org/0000-0001-8985-0471</orcidid><orcidid>https://orcid.org/0000-0002-9904-9845</orcidid><orcidid>https://orcid.org/0000-0002-7419-4499</orcidid><orcidid>https://orcid.org/0000-0003-3237-0199</orcidid><orcidid>https://orcid.org/0000-0002-1517-5845</orcidid><orcidid>https://orcid.org/0000-0002-5802-9944</orcidid><orcidid>https://orcid.org/0000-0003-3161-3697</orcidid><orcidid>https://orcid.org/0000-0001-9232-7382</orcidid><orcidid>https://orcid.org/0000-0001-8214-7265</orcidid><orcidid>https://orcid.org/0000-0001-7101-9989</orcidid><orcidid>https://orcid.org/0000000332370199</orcidid><orcidid>https://orcid.org/0000000274194499</orcidid><orcidid>https://orcid.org/0000000189850471</orcidid><orcidid>https://orcid.org/0000000192327382</orcidid><orcidid>https://orcid.org/0000000331613697</orcidid><orcidid>https://orcid.org/0000000171019989</orcidid><orcidid>https://orcid.org/0000000258029944</orcidid><orcidid>https://orcid.org/000000020209064X</orcidid><orcidid>https://orcid.org/0000000215175845</orcidid><orcidid>https://orcid.org/0000000299049845</orcidid><orcidid>https://orcid.org/0000000182147265</orcidid><orcidid>https://orcid.org/0000000336889158</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2020-04, Vol.368 (6488), p.297-303 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_osti_scitechconnect_1799552 |
source | American Association for the Advancement of Science |
subjects | Alternative fuels Aluminum Clean energy Computer simulation Containers Energy Energy storage Federal agencies Fossil fuels Gravimetry Hydrogen Hydrogen storage Iron Metal-organic frameworks Methane Nuclear fuels Porosity Porous materials Pressure Science & Technology - Other Topics Scientific Concepts Storage Temperature Work capacity |
title | Balancing volumetric and gravimetric uptake in highly porous materials for clean energy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A57%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Balancing%20volumetric%20and%20gravimetric%20uptake%20in%20highly%20porous%20materials%20for%20clean%20energy&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Chen,%20Zhijie&rft.aucorp=Oak%20Ridge%20Associated%20Univ.,%20Oak%20Ridge,%20TN%20(United%20States)&rft.date=2020-04-17&rft.volume=368&rft.issue=6488&rft.spage=297&rft.epage=303&rft.pages=297-303&rft.issn=0036-8075&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.aaz8881&rft_dat=%3Cproquest_osti_%3E2391972520%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2390842860&rft_id=info:pmid/32299950&rfr_iscdi=true |