Balancing volumetric and gravimetric uptake in highly porous materials for clean energy

A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2020-04, Vol.368 (6488), p.297-303
Hauptverfasser: Chen, Zhijie, Li, Penghao, Anderson, Ryther, Wang, Xingjie, Zhang, Xuan, Robison, Lee, Redfern, Louis R, Moribe, Shinya, Islamoglu, Timur, Gómez-Gualdrón, Diego A, Yildirim, Taner, Stoddart, J Fraser, Farha, Omar K
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A huge challenge facing scientists is the development of adsorbent materials that exhibit ultrahigh porosity but maintain balance between gravimetric and volumetric surface areas for the onboard storage of hydrogen and methane gas-alternatives to conventional fossil fuels. Here we report the simulation-motivated synthesis of ultraporous metal-organic frameworks (MOFs) based on metal trinuclear clusters, namely, NU-1501-M (M = Al or Fe). Relative to other ultraporous MOFs, NU-1501-Al exhibits concurrently a high gravimetric Brunauer-Emmett-Teller (BET) area of 7310 m g and a volumetric BET area of 2060 m cm while satisfying the four BET consistency criteria. The high porosity and surface area of this MOF yielded impressive gravimetric and volumetric storage performances for hydrogen and methane: NU-1501-Al surpasses the gravimetric methane storage U.S. Department of Energy target (0.5 g g ) with an uptake of 0.66 g g [262 cm (standard temperature and pressure, STP) cm ] at 100 bar/270 K and a 5- to 100-bar working capacity of 0.60 g g [238 cm (STP) cm ] at 270 K; it also shows one of the best deliverable hydrogen capacities (14.0 weight %, 46.2 g liter ) under a combined temperature and pressure swing (77 K/100 bar → 160 K/5 bar).
ISSN:0036-8075
1095-9203
DOI:10.1126/science.aaz8881