The Dark Energy Survey Supernova Programme: Modelling Selection Efficiency and Observed Core-collapse Supernova Contamination
The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accuratephotometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes anessential step for training and testing photom...
Gespeichert in:
Veröffentlicht in: | Mon.Not.Roy.Astron.Soc 2021-08, Vol.505 (2), p.2819-2839 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The analysis of current and future cosmological surveys of Type Ia supernovae (SNe Ia) at high redshift depends on the accuratephotometric classification of the SN events detected. Generating realistic simulations of photometric SN surveys constitutes anessential step for training and testing photometric classification algorithms, and for correcting biases introduced by selectioneffects and contamination arising from core-collapse SNe in the photometric SN Ia samples. We use published SN time-seriesspectrophotometric templates, rates, luminosity functions, and empirical relationships between SNe and their host galaxies toconstruct a framework for simulating photometric SN surveys. We present this framework in the context of the Dark EnergySurvey (DES) 5-yr photometric SN sample, comparing our simulations of DES with the observed DES transient populations.We demonstrate excellent agreement in many distributions, including Hubble residuals, between our simulations and data.We estimate the core collapse fraction expected in the DES SN sample after selection requirements are applied and beforephotometric classification. After testing different modelling choices and astrophysical assumptions underlying our simulation,we find that the predicted contamination varies from 7.2 to 11.7 per cent, with an average of 8.8 per cent and an r.m.s. of 1.1 percent. Our simulations are the first to reproduce the observed photometric SN and host galaxy properties in high-redshift surveyswithout fine-tuning the input parameters. The simulation methods presented here will be a critical component of the cosmologyanalysis of the DES photometric SN Ia sample: correcting for biases arising from contamination, and evaluating the associatedsystematic uncertainty. |
---|---|
ISSN: | 0035-8711 1365-2966 |
DOI: | 10.1093/mnras/stab1353 |