Radiation-Induced Error Mitigation by Read-Retry Technique for MLC 3-D NAND Flash Memory
In this article, we have evaluated the Read-Retry (RR) functionality of the 3-D NAND chip of multilevel-cell (MLC) configuration after total ionization dose (TID) exposure. The RR function is typically offered in the high-density state-of-the-art NAND memory chips to recover data once the default me...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on nuclear science 2021-05, Vol.68 (5), p.1032-1039 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this article, we have evaluated the Read-Retry (RR) functionality of the 3-D NAND chip of multilevel-cell (MLC) configuration after total ionization dose (TID) exposure. The RR function is typically offered in the high-density state-of-the-art NAND memory chips to recover data once the default memory read method fails to correct data with error correction codes (ECCs). In this work, we have applied the RR method on the irradiated 3-D NAND chip that was exposed with a Co-60 gamma-ray source for TID up to 50 krad (Si). Based on our experimental evaluation results, we have proposed an algorithm to efficiently implement the RR method to extend the radiation tolerance of the NAND memory chip. Our experimental evaluation shows that the RR method coupled with ECC can ensure data integrity of MLC 3-D NAND for TID up to 50 krad (Si). |
---|---|
ISSN: | 0018-9499 1558-1578 |
DOI: | 10.1109/TNS.2021.3052909 |