End-to-end online performance data capture and analysis for scientific workflows
With the increased prevalence of employing workflows for scientific computing and a push towards exascale computing, it has become paramount that we are able to analyze characteristics of scientific applications to better understand their impact on the underlying infrastructure and vice-versa. Such...
Gespeichert in:
Veröffentlicht in: | Future generation computer systems 2020-12, Vol.117 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | With the increased prevalence of employing workflows for scientific computing and a push towards exascale computing, it has become paramount that we are able to analyze characteristics of scientific applications to better understand their impact on the underlying infrastructure and vice-versa. Such analysis can help drive the design, development, and optimization of these next generation systems and solutions. In this paper, we present the architecture, integrated with existing well-established and newly developed tools, to collect online performance statistics of workflow executions from various, heterogeneous sources and publish them in a distributed database (Elasticsearch). Using this architecture, we are able to correlate online workflow performance data, with data from the underlying infrastructure, and present them in a useful and intuitive way via an online dashboard. We have validated our approach by executing two classes of real-world workflows, both under normal and anomalous conditions. The first is an I/O-intensive genome analysis workflow; the second, a CPUand memory-intensive material science workflow. Based on the data collected in Elasticsearch, we are able to demonstrate that we can correctly identify anomalies that we injected. The resulting end-to-end data collection of workflow performance data is an important resource of training data for automated machine learning analysis. |
---|---|
ISSN: | 0167-739X 1872-7115 |