Lattice continuum-limit study of nucleon parton quasidistribution functions

The parton quasidistribution functions approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-05, Vol.103 (9), p.1, Article 094512
Hauptverfasser: Alexandrou, Constantia, Cichy, Krzysztof, Constantinou, Martha, Green, Jeremy R., Hadjiyiannakou, Kyriakos, Jansen, Karl, Manigrasso, Floriano, Scapellato, Aurora, Steffens, Fernanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 1
container_title Physical review. D
container_volume 103
creator Alexandrou, Constantia
Cichy, Krzysztof
Constantinou, Martha
Green, Jeremy R.
Hadjiyiannakou, Kyriakos
Jansen, Karl
Manigrasso, Floriano
Scapellato, Aurora
Steffens, Fernanda
description The parton quasidistribution functions approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first order in the lattice spacing a . Therefore, it is important to demonstrate that the continuum limit can be reliably taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation of isovector unpolarized and helicity PDFs using lattice ensembles with Nf = 2 + 1 + 1 Wilson twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings. Our results show a significant dependence on a , and the continuum extrapolation produces a better agreement with phenomenology. The latter is particularly true for the antiquark distribution at small momentum fraction x , where the extrapolation changes its sign.
doi_str_mv 10.1103/PhysRevD.103.094512
format Article
fullrecord <record><control><sourceid>proquest_osti_</sourceid><recordid>TN_cdi_osti_scitechconnect_1783395</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2535886482</sourcerecordid><originalsourceid>FETCH-LOGICAL-c349t-20ef3f0dace8084e40170b2d8241b39daf25568abc8db458468fd21d6a94dd5b3</originalsourceid><addsrcrecordid>eNo9kElLA0EUhBtRMGh-gZdBzxNfbzM9R4krBhTRc9PTC-mQzCS9CPn3doh6qqrHx6MohK4wzDAGevu-3McP-30_K2EGHeOYnKAJYS3UAKQ7_fcYztE0xhUU20DXYjxBrwuVkte20uOQ_JDzpl77jU9VTNnsq9FVQ9ZrOw7VVoVUZJdV9MbHFHyfky8Xlwd9MPESnTm1jnb6qxfo6_Hhc_5cL96eXuZ3i1pT1qWagHXUgVHaChDMMsAt9MQIwnBPO6Mc4bwRqtfC9IwL1ghnCDaN6pgxvKcX6Pr4d4zJy6h9snpZ-g9WJ4lbQWnHC3RzhLZh3GUbk1yNOQyllyScciEaJkih6JHSYYwxWCe3wW9U2EsM8rCu_FtXHsJxXfoDVs1v1Q</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2535886482</pqid></control><display><type>article</type><title>Lattice continuum-limit study of nucleon parton quasidistribution functions</title><source>American Physical Society Journals</source><creator>Alexandrou, Constantia ; Cichy, Krzysztof ; Constantinou, Martha ; Green, Jeremy R. ; Hadjiyiannakou, Kyriakos ; Jansen, Karl ; Manigrasso, Floriano ; Scapellato, Aurora ; Steffens, Fernanda</creator><creatorcontrib>Alexandrou, Constantia ; Cichy, Krzysztof ; Constantinou, Martha ; Green, Jeremy R. ; Hadjiyiannakou, Kyriakos ; Jansen, Karl ; Manigrasso, Floriano ; Scapellato, Aurora ; Steffens, Fernanda</creatorcontrib><description>The parton quasidistribution functions approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first order in the lattice spacing a . Therefore, it is important to demonstrate that the continuum limit can be reliably taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation of isovector unpolarized and helicity PDFs using lattice ensembles with Nf = 2 + 1 + 1 Wilson twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings. Our results show a significant dependence on a , and the continuum extrapolation produces a better agreement with phenomenology. The latter is particularly true for the antiquark distribution at small momentum fraction x , where the extrapolation changes its sign.</description><identifier>ISSN: 2470-0010</identifier><identifier>EISSN: 2470-0029</identifier><identifier>DOI: 10.1103/PhysRevD.103.094512</identifier><language>eng</language><publisher>College Park: American Physical Society</publisher><subject>Distribution functions ; Extrapolation ; Fermions ; Helicity ; Mathematical analysis ; Momentum ; Nucleons ; Operators (mathematics) ; Partons ; Phenomenology ; Pions ; Quantum chromodynamics</subject><ispartof>Physical review. D, 2021-05, Vol.103 (9), p.1, Article 094512</ispartof><rights>Copyright American Physical Society May 1, 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c349t-20ef3f0dace8084e40170b2d8241b39daf25568abc8db458468fd21d6a94dd5b3</citedby><cites>FETCH-LOGICAL-c349t-20ef3f0dace8084e40170b2d8241b39daf25568abc8db458468fd21d6a94dd5b3</cites><orcidid>0000-0003-1978-9614 ; 0000-0001-7570-0747 ; 0000000319789614 ; 0000000175700747</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/1783395$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexandrou, Constantia</creatorcontrib><creatorcontrib>Cichy, Krzysztof</creatorcontrib><creatorcontrib>Constantinou, Martha</creatorcontrib><creatorcontrib>Green, Jeremy R.</creatorcontrib><creatorcontrib>Hadjiyiannakou, Kyriakos</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Manigrasso, Floriano</creatorcontrib><creatorcontrib>Scapellato, Aurora</creatorcontrib><creatorcontrib>Steffens, Fernanda</creatorcontrib><title>Lattice continuum-limit study of nucleon parton quasidistribution functions</title><title>Physical review. D</title><description>The parton quasidistribution functions approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first order in the lattice spacing a . Therefore, it is important to demonstrate that the continuum limit can be reliably taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation of isovector unpolarized and helicity PDFs using lattice ensembles with Nf = 2 + 1 + 1 Wilson twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings. Our results show a significant dependence on a , and the continuum extrapolation produces a better agreement with phenomenology. The latter is particularly true for the antiquark distribution at small momentum fraction x , where the extrapolation changes its sign.</description><subject>Distribution functions</subject><subject>Extrapolation</subject><subject>Fermions</subject><subject>Helicity</subject><subject>Mathematical analysis</subject><subject>Momentum</subject><subject>Nucleons</subject><subject>Operators (mathematics)</subject><subject>Partons</subject><subject>Phenomenology</subject><subject>Pions</subject><subject>Quantum chromodynamics</subject><issn>2470-0010</issn><issn>2470-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kElLA0EUhBtRMGh-gZdBzxNfbzM9R4krBhTRc9PTC-mQzCS9CPn3doh6qqrHx6MohK4wzDAGevu-3McP-30_K2EGHeOYnKAJYS3UAKQ7_fcYztE0xhUU20DXYjxBrwuVkte20uOQ_JDzpl77jU9VTNnsq9FVQ9ZrOw7VVoVUZJdV9MbHFHyfky8Xlwd9MPESnTm1jnb6qxfo6_Hhc_5cL96eXuZ3i1pT1qWagHXUgVHaChDMMsAt9MQIwnBPO6Mc4bwRqtfC9IwL1ghnCDaN6pgxvKcX6Pr4d4zJy6h9snpZ-g9WJ4lbQWnHC3RzhLZh3GUbk1yNOQyllyScciEaJkih6JHSYYwxWCe3wW9U2EsM8rCu_FtXHsJxXfoDVs1v1Q</recordid><startdate>20210518</startdate><enddate>20210518</enddate><creator>Alexandrou, Constantia</creator><creator>Cichy, Krzysztof</creator><creator>Constantinou, Martha</creator><creator>Green, Jeremy R.</creator><creator>Hadjiyiannakou, Kyriakos</creator><creator>Jansen, Karl</creator><creator>Manigrasso, Floriano</creator><creator>Scapellato, Aurora</creator><creator>Steffens, Fernanda</creator><general>American Physical Society</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>OTOTI</scope><orcidid>https://orcid.org/0000-0003-1978-9614</orcidid><orcidid>https://orcid.org/0000-0001-7570-0747</orcidid><orcidid>https://orcid.org/0000000319789614</orcidid><orcidid>https://orcid.org/0000000175700747</orcidid></search><sort><creationdate>20210518</creationdate><title>Lattice continuum-limit study of nucleon parton quasidistribution functions</title><author>Alexandrou, Constantia ; Cichy, Krzysztof ; Constantinou, Martha ; Green, Jeremy R. ; Hadjiyiannakou, Kyriakos ; Jansen, Karl ; Manigrasso, Floriano ; Scapellato, Aurora ; Steffens, Fernanda</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c349t-20ef3f0dace8084e40170b2d8241b39daf25568abc8db458468fd21d6a94dd5b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Distribution functions</topic><topic>Extrapolation</topic><topic>Fermions</topic><topic>Helicity</topic><topic>Mathematical analysis</topic><topic>Momentum</topic><topic>Nucleons</topic><topic>Operators (mathematics)</topic><topic>Partons</topic><topic>Phenomenology</topic><topic>Pions</topic><topic>Quantum chromodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandrou, Constantia</creatorcontrib><creatorcontrib>Cichy, Krzysztof</creatorcontrib><creatorcontrib>Constantinou, Martha</creatorcontrib><creatorcontrib>Green, Jeremy R.</creatorcontrib><creatorcontrib>Hadjiyiannakou, Kyriakos</creatorcontrib><creatorcontrib>Jansen, Karl</creatorcontrib><creatorcontrib>Manigrasso, Floriano</creatorcontrib><creatorcontrib>Scapellato, Aurora</creatorcontrib><creatorcontrib>Steffens, Fernanda</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Physical review. D</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandrou, Constantia</au><au>Cichy, Krzysztof</au><au>Constantinou, Martha</au><au>Green, Jeremy R.</au><au>Hadjiyiannakou, Kyriakos</au><au>Jansen, Karl</au><au>Manigrasso, Floriano</au><au>Scapellato, Aurora</au><au>Steffens, Fernanda</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lattice continuum-limit study of nucleon parton quasidistribution functions</atitle><jtitle>Physical review. D</jtitle><date>2021-05-18</date><risdate>2021</risdate><volume>103</volume><issue>9</issue><spage>1</spage><pages>1-</pages><artnum>094512</artnum><issn>2470-0010</issn><eissn>2470-0029</eissn><abstract>The parton quasidistribution functions approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first order in the lattice spacing a . Therefore, it is important to demonstrate that the continuum limit can be reliably taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation of isovector unpolarized and helicity PDFs using lattice ensembles with Nf = 2 + 1 + 1 Wilson twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings. Our results show a significant dependence on a , and the continuum extrapolation produces a better agreement with phenomenology. The latter is particularly true for the antiquark distribution at small momentum fraction x , where the extrapolation changes its sign.</abstract><cop>College Park</cop><pub>American Physical Society</pub><doi>10.1103/PhysRevD.103.094512</doi><orcidid>https://orcid.org/0000-0003-1978-9614</orcidid><orcidid>https://orcid.org/0000-0001-7570-0747</orcidid><orcidid>https://orcid.org/0000000319789614</orcidid><orcidid>https://orcid.org/0000000175700747</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2470-0010
ispartof Physical review. D, 2021-05, Vol.103 (9), p.1, Article 094512
issn 2470-0010
2470-0029
language eng
recordid cdi_osti_scitechconnect_1783395
source American Physical Society Journals
subjects Distribution functions
Extrapolation
Fermions
Helicity
Mathematical analysis
Momentum
Nucleons
Operators (mathematics)
Partons
Phenomenology
Pions
Quantum chromodynamics
title Lattice continuum-limit study of nucleon parton quasidistribution functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T06%3A21%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_osti_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lattice%20continuum-limit%20study%20of%20nucleon%20parton%20quasidistribution%20functions&rft.jtitle=Physical%20review.%20D&rft.au=Alexandrou,%20Constantia&rft.date=2021-05-18&rft.volume=103&rft.issue=9&rft.spage=1&rft.pages=1-&rft.artnum=094512&rft.issn=2470-0010&rft.eissn=2470-0029&rft_id=info:doi/10.1103/PhysRevD.103.094512&rft_dat=%3Cproquest_osti_%3E2535886482%3C/proquest_osti_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2535886482&rft_id=info:pmid/&rfr_iscdi=true