Lattice continuum-limit study of nucleon parton quasidistribution functions

The parton quasidistribution functions approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. D 2021-05, Vol.103 (9), p.1, Article 094512
Hauptverfasser: Alexandrou, Constantia, Cichy, Krzysztof, Constantinou, Martha, Green, Jeremy R., Hadjiyiannakou, Kyriakos, Jansen, Karl, Manigrasso, Floriano, Scapellato, Aurora, Steffens, Fernanda
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The parton quasidistribution functions approach provides a path to computing parton distribution functions (PDFs) using lattice QCD. This approach requires matrix elements of a power-divergent operator in a nucleon at high momentum and one generically expects discretization effects starting at first order in the lattice spacing a . Therefore, it is important to demonstrate that the continuum limit can be reliably taken and to understand the size and shape of lattice artifacts. In this work, we report a calculation of isovector unpolarized and helicity PDFs using lattice ensembles with Nf = 2 + 1 + 1 Wilson twisted mass fermions, a pion mass of approximately 370 MeV, and three different lattice spacings. Our results show a significant dependence on a , and the continuum extrapolation produces a better agreement with phenomenology. The latter is particularly true for the antiquark distribution at small momentum fraction x , where the extrapolation changes its sign.
ISSN:2470-0010
2470-0029
DOI:10.1103/PhysRevD.103.094512