The origin and formation of oxygen inclusions in austenitic stainless steels manufactured by laser powder bed fusion

The origins of nano-scale oxide inclusions in 316L austenitic stainless steel (SS) manufactured by laser powder bed fusion (L-PBF) was investigated by quantifying the possible intrusion pathways of oxygen contained in the precursor powder, extraneous oxygen from the process environment during laser...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Additive manufacturing 2020-10, Vol.35 (C), p.101334, Article 101334
Hauptverfasser: Deng, Pu, Karadge, Mallikarjun, Rebak, Raul B., Gupta, Vipul K., Prorok, Barton C., Lou, Xiaoyuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The origins of nano-scale oxide inclusions in 316L austenitic stainless steel (SS) manufactured by laser powder bed fusion (L-PBF) was investigated by quantifying the possible intrusion pathways of oxygen contained in the precursor powder, extraneous oxygen from the process environment during laser processing, and moisture contamination during powder handling and storage. When processing the fresh, as-received powder in a well-controlled environment, the oxide inclusions contained in the precursor powder were the primary contributors to the formation of nano-scale oxides in the final additive manufactured (AM) product. These oxide inclusions were found to be enriched with oxygen getter elements like Si and Mn. By controlling the extraneous oxygen level in the process environment, the oxygen level in AM produced parts was found to increase with the extraneous oxygen level. The intrusion pathway of this extra oxygen was found to be dominated by the incorporation of spatter particles into the build during processing. Moisture induced oxidation during powder storage was also found to result in a higher oxide density in the AM produced parts. SS 316L powder free of Si and Mn oxygen getters was processed in a well-controlled environment and resulted in a similar level of oxygen intrusion. Microhardness testing indicated that the oxide volume fraction increase from extraneous oxygen did not influence hardness values. However, a marked decrease in hardness was found for the humidified and Si-Mn free AM processed parts.
ISSN:2214-8604
2214-7810
DOI:10.1016/j.addma.2020.101334