A study of corrosion on electrodeposited superhydrophobic copper surfaces

•Presents a facile, low energy, electrodepostion method for fabrication of copper-based superhydrophobic surfaces.•Presents, for the first time, a systematic study on the effect of surface functionalization time.•Presents the corrosion inhibition characteristics of superhydrophobic surfaces in a wid...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Corrosion science 2021-07, Vol.186 (C), p.109420, Article 109420
Hauptverfasser: Mousavi, S.M.A, Pitchumani, R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:•Presents a facile, low energy, electrodepostion method for fabrication of copper-based superhydrophobic surfaces.•Presents, for the first time, a systematic study on the effect of surface functionalization time.•Presents the corrosion inhibition characteristics of superhydrophobic surfaces in a wide range of corrosive environments.•Reports corrosion resistance of superhydrophobic copper surfaces, for the first time, as a function of temperature.•Presents a study of corrosion durability of the surfaces under long-term immersion in the corrosive environments. This study considers the corrosion characteristics of superhydrophobic copper surfaces with multiscale asperities formed inherently on a copper substrate, using a facile, low energy, electrodepostion method. A systematic study is presented for the first time on the effect of surface functionalization time on long-term immersion in a wide range of corrosive environments from the extremely acidic to the extremely alkaline. The corrosion resistance is also reported for the first time as a function of temperature in the range 23–85 °C. The superhydrophobic surfaces are shown to enhance corrosion resistance by up to four orders of magnitude compared to bare copper.
ISSN:0010-938X
1879-0496
DOI:10.1016/j.corsci.2021.109420