Comprehensive review of photophysical parameters (ε, Φf, τs) of tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) – Critical benchmark molecules in photochemistry and photosynthesis

[Display omitted] Tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) are widely used benchmark molecules in diverse photochemical studies given facile synthetic access, rich visible-region spectra, and broad structural analogy to chlorophylls. Yet the literature values for each key p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of photochemistry and photobiology. C, Photochemistry reviews Photochemistry reviews, 2021-03, Vol.46 (C), p.100401, Article 100401
Hauptverfasser: Taniguchi, Masahiko, Lindsey, Jonathan S., Bocian, David F., Holten, Dewey
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:[Display omitted] Tetraphenylporphyrin (H2TPP) and zinc tetraphenylporphyrin (ZnTPP) are widely used benchmark molecules in diverse photochemical studies given facile synthetic access, rich visible-region spectra, and broad structural analogy to chlorophylls. Yet the literature values for each key photophysical parameter – the molar absorption coefficient (ε), fluorescence quantum yield (Φf), and also singlet excited-state lifetime (τS) – vary over an astonishing range. Here, a comprehensive literature review (∼1940–September 2020) encompassing 871 publications is reported for these essential parameters. Each parameter is determined by measurement with distinct instrumentation and suffers idiosyncratic sources of error. The best values for H2TPP are ε = 460,000 cm−1·M−1, Φf = 0.090, and τS = 12.8 ns in Ar- purged toluene (Φf = 0.070, τS = 9.9 ns in toluene in air); the best values for ZnTPP are ε = 560,000 cm−1·M−1, Φf = 0.030, and τS = 2.1 ns in Ar-purged toluene (Φf = 0.029, τS = 2.0 ns in toluene in air). The choice of values for such parameters has far-reaching consequences in photochemistry ranging from fluorescence (or Förster) resonance energy transfer (FRET) processes to assessments of molecular brightness.
ISSN:1389-5567
1873-2739
DOI:10.1016/j.jphotochemrev.2020.100401