Understanding the Mesoscale Degradation in Nickel-Rich Cathode Materials through Machine-Learning-Revealed Strain–Redox Decoupling
The degradation of nickel-rich cathode materials for lithium-ion batteries upon prolonged electrochemical cycling features a complicated interplay among electronic structure, lattice configuration, and micro-morphology. The underlying mechanism for such an entanglement of different material properti...
Gespeichert in:
Veröffentlicht in: | ACS energy letters 2021-02, Vol.6 (2), p.687-693 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The degradation of nickel-rich cathode materials for lithium-ion batteries upon prolonged electrochemical cycling features a complicated interplay among electronic structure, lattice configuration, and micro-morphology. The underlying mechanism for such an entanglement of different material properties at nano- to mesoscales is fundamental to the battery performance but not well-understood yet. Here we investigate the correlation between the local redox reaction and lattice mismatch through a nano-resolution synchrotron spectro-microscopy study of LiNi0.8Co0.1Mn0.1O2 (NCM 811) cathode particles. With assistance from a machine-learning-based data classification method, we identify local regions that demonstrate a strain–redox decoupling effect, which can be attributed to different side reactions. Our results highlight the mesoscale reaction heterogeneity in the battery cathode and suggest that particle structure engineering could be a viable approach to mitigate the chemomechanical degradation of cathode materials. |
---|---|
ISSN: | 2380-8195 2380-8195 |
DOI: | 10.1021/acsenergylett.0c02699 |