Understanding the Mesoscale Degradation in Nickel-Rich Cathode Materials through Machine-Learning-Revealed Strain–Redox Decoupling

The degradation of nickel-rich cathode materials for lithium-ion batteries upon prolonged electrochemical cycling features a complicated interplay among electronic structure, lattice configuration, and micro-morphology. The underlying mechanism for such an entanglement of different material properti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS energy letters 2021-02, Vol.6 (2), p.687-693
Hauptverfasser: Qian, Guannan, Zhang, Jin, Chu, Sheng-Qi, Li, Jizhou, Zhang, Kai, Yuan, Qingxi, Ma, Zi-Feng, Pianetta, Piero, Li, Linsen, Jung, Keeyoung, Liu, Yijin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The degradation of nickel-rich cathode materials for lithium-ion batteries upon prolonged electrochemical cycling features a complicated interplay among electronic structure, lattice configuration, and micro-morphology. The underlying mechanism for such an entanglement of different material properties at nano- to mesoscales is fundamental to the battery performance but not well-understood yet. Here we investigate the correlation between the local redox reaction and lattice mismatch through a nano-resolution synchrotron spectro-microscopy study of LiNi0.8Co0.1­Mn0.1O2 (NCM 811) cathode particles. With assistance from a machine-learning-based data classification method, we identify local regions that demonstrate a strain–redox decoupling effect, which can be attributed to different side reactions. Our results highlight the mesoscale reaction heterogeneity in the battery cathode and suggest that particle structure engineering could be a viable approach to mitigate the chemomechanical degradation of cathode materials.
ISSN:2380-8195
2380-8195
DOI:10.1021/acsenergylett.0c02699