cm2-Scale Synthesis of MoTe2 Thin Films with Large Grains and Layer Control
Owing to the small energy differences between its polymorphs, MoTe2 can access a full spectrum of electronic states from the 2H semiconducting state to the 1T' semimetallic state and from the Td Weyl semimetallic state to the superconducting state in the 1T' and Td phase at low temperature...
Gespeichert in:
Veröffentlicht in: | ACS nano 2020-11, Vol.15 (1) |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Owing to the small energy differences between its polymorphs, MoTe2 can access a full spectrum of electronic states from the 2H semiconducting state to the 1T' semimetallic state and from the Td Weyl semimetallic state to the superconducting state in the 1T' and Td phase at low temperature. Thus, it is a model system for phase transformation studies as well as quantum phenomena such as the quantum spin Hall effect and topological superconductivity. Careful studies of MoTe2 and its potential applications require large-area MoTe2 thin films with high crystallinity and thickness control. Here, we present cm2-scale synthesis of 2H-MoTe2 thin films with layer control and large grains that span several microns. Layer control is achieved by controlling the initial thickness of the precursor MoOx thin films, which are deposited on sapphire substrates by atomic layer deposition and subsequently tellurized. Despite the van der Waals epitaxy, the precursor–substrate interface is found to critically determine the uniformity in thickness and grain size of the resulting MoTe2 films: MoTe2 grown on sapphire show uniform films while MoTe2 grown on amorphous SiO2 substrates form islands. Furthermore, this synthesis strategy decouples the layer control from the variabilities of growth conditions for robust growth results and is applicable to growing other transition-metal dichalcogenides with layer control. |
---|---|
ISSN: | 1936-0851 1936-086X |