Detection of the keto-enol tautomerization in acetaldehyde, acetone, cyclohexanone, and methyl vinyl ketone with a novel VUV light source

The discovery of enols in combustion environments and our atmosphere has garnered increasing attention to the many unanswered questions surrounding enol chemistry. The scarcity of experimental data concerning these enols renders combustion and atmospheric models with a lack of constraining parameter...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the Combustion Institute 2021, Vol.38 (1), p.1737-1744
Hauptverfasser: Couch, David E., Nguyen, Quynh L.D., Liu, Allison, Hickstein, Daniel D., Kapteyn, Henry C., Murnane, Margaret M., Labbe, Nicole J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The discovery of enols in combustion environments and our atmosphere has garnered increasing attention to the many unanswered questions surrounding enol chemistry. The scarcity of experimental data concerning these enols renders combustion and atmospheric models with a lack of constraining parameters, leading to varying computational predictions. Experimental detection is difficult because mass spectrometry, a powerful tool for probing a wide variety of species, cannot distinguish between enols and their thermodynamically favorable ketone isomers. A solution to this ambiguity is to use tunable vacuum ultraviolet (VUV) light from a synchrotron to identify the presence of the enol by its lower ionization energy compared to the isomer. We present a tabletop-scale VUV light source that implements highly cascaded harmonic generation, a new regime of cascaded nonlinear optics, to provide a set of spectral lines spaced by 1.2 eV. We demonstrate that the variety of photon energies available allows us to detect the keto-enol tautomerization of four aldehydes and ketones. By combining this novel VUV light source with an established microreactor, we first revisit the formation of vinyl alcohol from acetaldehyde and confirm that the observed isomerization is indeed unimolecular. Secondly, we observe the thermal tautomerization of acetone to propen-2-ol for the first time. Finally, we observe the thermal tautomerization of cyclohexanone to 1-cyclohexenol and methyl vinyl ketone to 2-hydroxybutadiene, where the results are in good agreement with those reported at a synchrotron. Our measurements can be used to constrain models, inform future experimental studies of enol reactivity, and potentially enhance current understanding of combustion and environmental chemistry.
ISSN:1540-7489
1873-2704
DOI:10.1016/j.proci.2020.06.139