Partially observable multistage stochastic programming
We propose a class of partially observable multistage stochastic programs and describe an algorithm for solving this class of problems. We provide a Bayesian update of a belief-state vector, extend the stochastic programming formulation to incorporate the belief state, and characterize saddle-functi...
Gespeichert in:
Veröffentlicht in: | Operations research letters 2020-07, Vol.48 (4), p.505-512 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We propose a class of partially observable multistage stochastic programs and describe an algorithm for solving this class of problems. We provide a Bayesian update of a belief-state vector, extend the stochastic programming formulation to incorporate the belief state, and characterize saddle-function properties of the corresponding cost-to-go function. Our algorithm is a derivative of the stochastic dual dynamic programming method. |
---|---|
ISSN: | 0167-6377 1872-7468 |
DOI: | 10.1016/j.orl.2020.06.005 |