Alignment of Cellulose Nanofibers: Harnessing Nanoscale Properties to Macroscale Benefits

In nature, cellulose nanofibers form hierarchical structures across multiple length scales to achieve high-performance properties and different functionalities. Cellulose nanofibers, which are separated from plants or synthesized biologically, are being extensively investigated and processed into di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2021-03, Vol.15 (3), p.3646-3673
Hauptverfasser: Li, Kai, Clarkson, Caitlyn M, Wang, Lu, Liu, Yu, Lamm, Meghan, Pang, Zhenqian, Zhou, Yubing, Qian, Ji, Tajvidi, Mehdi, Gardner, Douglas J, Tekinalp, Halil, Hu, Liangbing, Li, Teng, Ragauskas, Arthur J, Youngblood, Jeffrey P, Ozcan, Soydan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In nature, cellulose nanofibers form hierarchical structures across multiple length scales to achieve high-performance properties and different functionalities. Cellulose nanofibers, which are separated from plants or synthesized biologically, are being extensively investigated and processed into different materials owing to their good properties. The alignment of cellulose nanofibers is reported to significantly influence the performance of cellulose nanofiber-based materials. The alignment of cellulose nanofibers can bridge the nanoscale and macroscale, bringing enhanced nanoscale properties to high-performance macroscale materials. However, compared with extensive reviews on the alignment of cellulose nanocrystals, reviews focusing on cellulose nanofibers are seldom reported, possibly because of the challenge of aligning cellulose nanofibers. In this review, the alignment of cellulose nanofibers, including cellulose nanofibrils and bacterial cellulose, is extensively discussed from different aspects of the driving force, evaluation, strategies, properties, and applications. Future perspectives on challenges and opportunities in cellulose nanofiber alignment are also briefly highlighted.
ISSN:1936-0851
1936-086X
DOI:10.1021/acsnano.0c07613