Realizing Metal-Free Carbene-Catalyzed Carbonylation Reactions with CO
Many organic and main-group compounds, usually acids or bases, can accelerate chemical reactions when used in substoichiometric quantities, a process known as organocatalysis. In marked contrast, very few of these compounds are able to activate carbon monoxide, and until now, none of them could cata...
Gespeichert in:
Veröffentlicht in: | Journal of the American Chemical Society 2020-10, Vol.142 (43), p.18336-18340 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Many organic and main-group compounds, usually acids or bases, can accelerate chemical reactions when used in substoichiometric quantities, a process known as organocatalysis. In marked contrast, very few of these compounds are able to activate carbon monoxide, and until now, none of them could catalyze its chemical transformation, a classical task for transition metals. Herein we report that a stable singlet ambiphilic carbene activates CO and catalytically promotes the carbonylation of an o-quinone into a cyclic carbonate. These findings pave the way for the discovery of metal-free catalyzed carbonylation reactions. |
---|---|
ISSN: | 0002-7863 1520-5126 |
DOI: | 10.1021/jacs.0c09938 |