A Stochastic Multi-Criteria Decision-Making Algorithm for Dynamic Load Prioritization in Grid-Interactive Efficient Buildings
Increasing deployment of advanced sensing, controls, and communication infrastructure enables buildings to provide services to the power grid, leading to the concept of grid-interactive efficient buildings. Since occupant activities and preferences primarily drive the availability and operational fl...
Gespeichert in:
Veröffentlicht in: | ASME letters in dynamic systems and control 2021-07, Vol.1 (3) |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Increasing deployment of advanced sensing, controls, and communication infrastructure enables buildings to provide services to the power grid, leading to the concept of grid-interactive efficient buildings. Since occupant activities and preferences primarily drive the availability and operational flexibility of building devices, there is a critical need to develop occupant-centric approaches that prioritize devices for providing grid services, while maintaining the desired end-use quality of service. In this paper, we present a decision-making framework that facilitates a building owner/operator to effectively prioritize loads for curtailment service under uncertainties, while minimizing any adverse impact on the occupants. The proposed framework uses a stochastic (Markov) model to represent the probabilistic behavior of device usage from power consumption data, and a load prioritization algorithm that dynamically ranks building loads using a stochastic multi-criteria decision-making algorithm. The proposed load prioritization framework is illustrated via numerical simulations in a residential building use-case, including plug-loads, air-conditioners, and plug-in electric vehicle chargers, in the context of load curtailment as a grid service. Suitable metrics are proposed to evaluate the closed-loop performance of the proposed prioritization algorithm under various scenarios and design choices. Scalability of the proposed algorithm is established via computational analysis, while time-series plots are used for intuitive explanation of the ranking choices. |
---|---|
ISSN: | 2689-6117 2689-6125 |
DOI: | 10.1115/1.4050124 |