Rational synthesis of atomically precise graphene nanoribbons directly on metal oxide surfaces
Atomically precise nanographenes and nanoribbons have been synthesized on metal surfaces that catalyze cyclode-hydrogenation of precursors. However, for use in devices, these structures usually must be transferred to insulating or semiconducting surfaces. Kolmer et al. synthesized precise graphene n...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2020-07, Vol.369 (6503), p.571-575 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Atomically precise nanographenes and nanoribbons have been synthesized on metal surfaces that catalyze cyclode-hydrogenation of precursors. However, for use in devices, these structures usually must be transferred to insulating or semiconducting surfaces. Kolmer
et al.
synthesized precise graphene nanoribbons on the surface of rutile titanium dioxide (TiO
2
) that assisted the cyclode-hydrofluorination of specifically designed precursor molecules through a series of thermally triggered transformations. Scanning tunneling microscopy and spectroscopy confirmed the formation of well-defined zigzag ends of the nanoribbons as well as their weak interaction with the substrate.
Science
, this issue p.
571
Graphene nanoribbons were electronically decoupled from the metal oxide surface on which they were synthesized.
Atomically precise graphene nanoribbons (GNRs) attract great interest because of their highly tunable electronic, optical, and transport properties. However, on-surface synthesis of GNRs is typically based on metal surface–assisted chemical reactions, where metallic substrates strongly screen their designer electronic properties and limit further applications. Here, we present an on-surface synthesis approach to forming atomically precise GNRs directly on semiconducting metal oxide surfaces. The thermally triggered multistep transformations preprogrammed in our precursors’ design rely on highly selective and sequential activations of carbon-bromine (C-Br) and carbon-fluorine (C-F) bonds and cyclodehydrogenation. The formation of planar armchair GNRs terminated by well-defined zigzag ends is confirmed by scanning tunneling microscopy and spectroscopy, which also reveal weak interaction between GNRs and the rutile titanium dioxide substrate. |
---|---|
ISSN: | 0036-8075 1095-9203 |
DOI: | 10.1126/science.abb8880 |